{"title":"Modeling of donor/acceptor organic photodetector with C60 and B80 molecules and armchair graphene nanoribbon molecule","authors":"Majid Malek, Mohammad Danaie","doi":"10.1016/j.ssc.2024.115818","DOIUrl":null,"url":null,"abstract":"<div><div>Resonant tunneling diodes (RTDs) integrated with molecular materials have demonstrated significant potential as efficient and rapid organic photodetectors (OPDs). Understanding the charge transport mechanisms in RTD-based OPDs is crucial for optimizing device performance. This paper presents a comprehensive analysis of the charge transport mechanisms in RTD-based OPDs of which the operation is based on an intuitive 4-site model. We investigate the photocurrent (Iph), quantum efficiency (QE), and responsivity of OPDs using two acceptor molecules (C60 and B80 fullerenes) and one armchair graphene nanoribbon (AGNR) as the donor molecule. Additionally, we explore key factors that influence charge transport, including molecular structure, energy levels, and device architecture. Initially, the structures underwent optimization using the density functional theory (DFT) approach implemented in the Atomistix ToolKit (ATK) package. This allowed the extraction of the states and band gap energies of AGNR-σ-C60 and AGNR-σ-B80 molecules at zero voltage, followed by calculating the optical Hamiltonian to determine transmission. Subsequently, OPDs based on the optimized molecules were modeled and simulated using the non-equilibrium Green's function (NEGF) method in MATLAB software. The generated results were then used to derive the transmission and photocurrent curves of the devices. Simulation results indicate that utilizing fullerene B80 as the acceptor in AGNR-based donor/acceptor (D/A) OPDs enhances OPD parameters such as photocurrent, QE, and responsivity, thereby offering a promising avenue for future research. Furthermore, the device exhibits significant negative differential resistance (NDR). The insights gained from this study will provide a deeper understanding of the fundamental principles governing charge transport in RTD-based OPDs of which the operation is based on an intuitive 4-site model and will inform future design strategies.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"397 ","pages":"Article 115818"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003958","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Resonant tunneling diodes (RTDs) integrated with molecular materials have demonstrated significant potential as efficient and rapid organic photodetectors (OPDs). Understanding the charge transport mechanisms in RTD-based OPDs is crucial for optimizing device performance. This paper presents a comprehensive analysis of the charge transport mechanisms in RTD-based OPDs of which the operation is based on an intuitive 4-site model. We investigate the photocurrent (Iph), quantum efficiency (QE), and responsivity of OPDs using two acceptor molecules (C60 and B80 fullerenes) and one armchair graphene nanoribbon (AGNR) as the donor molecule. Additionally, we explore key factors that influence charge transport, including molecular structure, energy levels, and device architecture. Initially, the structures underwent optimization using the density functional theory (DFT) approach implemented in the Atomistix ToolKit (ATK) package. This allowed the extraction of the states and band gap energies of AGNR-σ-C60 and AGNR-σ-B80 molecules at zero voltage, followed by calculating the optical Hamiltonian to determine transmission. Subsequently, OPDs based on the optimized molecules were modeled and simulated using the non-equilibrium Green's function (NEGF) method in MATLAB software. The generated results were then used to derive the transmission and photocurrent curves of the devices. Simulation results indicate that utilizing fullerene B80 as the acceptor in AGNR-based donor/acceptor (D/A) OPDs enhances OPD parameters such as photocurrent, QE, and responsivity, thereby offering a promising avenue for future research. Furthermore, the device exhibits significant negative differential resistance (NDR). The insights gained from this study will provide a deeper understanding of the fundamental principles governing charge transport in RTD-based OPDs of which the operation is based on an intuitive 4-site model and will inform future design strategies.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.