A novel convolutional interpretability model for pixel-level interpretation of medical image classification through fusion of machine learning and fuzzy logic

Q2 Health Professions Smart Health Pub Date : 2024-12-21 DOI:10.1016/j.smhl.2024.100535
Mohammad Ennab, Hamid Mcheick
{"title":"A novel convolutional interpretability model for pixel-level interpretation of medical image classification through fusion of machine learning and fuzzy logic","authors":"Mohammad Ennab,&nbsp;Hamid Mcheick","doi":"10.1016/j.smhl.2024.100535","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) models for medical image analysis have achieved high diagnostic performance, but they often lack interpretability, limiting their clinical adoption. Existing methods can explain predictions at the image level, but they cannot provide pixel-level insights. This study proposes a novel fusion of machine learning and fuzzy logic to develop an interpretable model that can precisely identify discriminative image regions driving diagnostic decisions and generate heatmap visualization. The model is trained and evaluated on a dataset of CT scans containing healthy and diseased organ images. Quantitative features are extracted across pixels and normalized into representation matrices using a machine learning model. Subsequently, the contribution of each detected lesion to the overall prediction is quantified using fuzzy logic. Organ segment weighted averages are computed to identify significant lesions. The model explains application of AI in medical imaging with an unprecedented level of detail. It can explain fine-grained image areas that have the greatest influence on diagnostic outcomes by mapping raw image pixels to fuzzy membership concepts. Lesions are found with effect sizes and statistical significance (p &lt; 0.05).</div><div>Our model outperforms three existing methods in terms of interpretability and diagnostic accuracy by 10–15%, while maintaining computational efficiency. By disclosing crucial image evidence that supports AI decisions, this interpretable model improves transparency and clinician trust. Ethical implications of integrating AI in clinical settings are discussed, and future research directions are outlined. This study significantly advances the development of safe and interpretable AI for enhancing patient care through imaging analytics.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"35 ","pages":"Article 100535"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648324000916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) models for medical image analysis have achieved high diagnostic performance, but they often lack interpretability, limiting their clinical adoption. Existing methods can explain predictions at the image level, but they cannot provide pixel-level insights. This study proposes a novel fusion of machine learning and fuzzy logic to develop an interpretable model that can precisely identify discriminative image regions driving diagnostic decisions and generate heatmap visualization. The model is trained and evaluated on a dataset of CT scans containing healthy and diseased organ images. Quantitative features are extracted across pixels and normalized into representation matrices using a machine learning model. Subsequently, the contribution of each detected lesion to the overall prediction is quantified using fuzzy logic. Organ segment weighted averages are computed to identify significant lesions. The model explains application of AI in medical imaging with an unprecedented level of detail. It can explain fine-grained image areas that have the greatest influence on diagnostic outcomes by mapping raw image pixels to fuzzy membership concepts. Lesions are found with effect sizes and statistical significance (p < 0.05).
Our model outperforms three existing methods in terms of interpretability and diagnostic accuracy by 10–15%, while maintaining computational efficiency. By disclosing crucial image evidence that supports AI decisions, this interpretable model improves transparency and clinician trust. Ethical implications of integrating AI in clinical settings are discussed, and future research directions are outlined. This study significantly advances the development of safe and interpretable AI for enhancing patient care through imaging analytics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
期刊最新文献
PulseSight : A novel method for contactless oxygen saturation (SpO2) monitoring using smartphone cameras, remote photoplethysmography and machine learning Editorial Board Smart health practices: Strategies to improve healthcare efficiency through digital twin technology Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study SAFE: Sound Analysis for Fall Event detection using machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1