SLC31A1 promotes chemoresistance through inducing CPT1A-mediated fatty acid oxidation in ER-positive breast cancer

IF 4.8 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Neoplasia Pub Date : 2025-02-03 DOI:10.1016/j.neo.2025.101125
Xudong Li , Jingjing Ge , Mengdi Wan , Tongtong Feng , Xiaoqian Li , Haibo Zhang , Zhangyan Wang , Yongsheng Gao , Meiting Chen , Fei Pan
{"title":"SLC31A1 promotes chemoresistance through inducing CPT1A-mediated fatty acid oxidation in ER-positive breast cancer","authors":"Xudong Li ,&nbsp;Jingjing Ge ,&nbsp;Mengdi Wan ,&nbsp;Tongtong Feng ,&nbsp;Xiaoqian Li ,&nbsp;Haibo Zhang ,&nbsp;Zhangyan Wang ,&nbsp;Yongsheng Gao ,&nbsp;Meiting Chen ,&nbsp;Fei Pan","doi":"10.1016/j.neo.2025.101125","DOIUrl":null,"url":null,"abstract":"<div><div>Over 60% of breast cancer cases are diagnosed with estrogen-receptor (ER) positive. Tamoxifen (TAM), a commonly employed medication for ER-positive breast cancer, often yields suboptimal therapeutic outcomes due to the emergence of TAM resistance, leading to the recurrence and a poor prognosis. The copper transporter, solute carrier family 31 member 1 (SLC31A1), has been associated with tumor aggressiveness and unfavorable outcomes in various types of tumors. In our current study, we found high expression of SLC31A1 that predicted poor survival in patients with breast cancer. Significantly, ER-positive breast cancer tissues in patients with recurrence post-TAM treatment exhibited considerably stronger SLC31A1 expression levels. <em>In vitro</em> experiments verified that TAM-resistant ER-positive breast cancer cell lines expressed notably higher SLC31A1 levels compared to the parental cell lines. Of great significance, SLC31A1 depletion notably rescued TAM sensitivity in chemoresistant ER-positive breast cancer cells, as demonstrated by the attenuated cell proliferative and invasive capabilities. Conversely, promoting SLC31A1 significantly facilitated the proliferation and invasion of wild-type breast cancer cells. Subsequently, we detected reduced copper levels in TAM-resistant breast cancer cells with SLC31A1 depletion. Mechanistically, we observed that in chemoresistant breast cancer cell lines, SLC31A1 knockdown resulted in a substantial decrease in the expression of carnitine palmitoyltransferase 1A (CPT1A), a rate-limiting enzyme of fatty acid oxidation (FAO). RNA-Seq analysis indicated that FAO might be implicated in SLC31A1-mediated breast cancer progression. CPT1A was also overexpressed in TAM-resistant breast cancer cells, accompanied by enhanced FAO rates and ATP levels. Suppressing CPT1A significantly enhanced the chemosensitivity of TAM-resistant breast cancer cells in response to TAM treatments. Intriguingly, copper exposure dose-dependently increased CPT1A expression in chemoresistant breast cancer cells, but this could be abolished upon SLC31A1 knockdown, along with enhanced apoptosis, which elucidated that copper uptake contributed to CPT1A expression. Furthermore, SLC31A1 overexpression significantly augmented CPT1A expression in parental breast cancer cells, accompanied by facilitated copper levels, FAO rates, and ATP levels, while being notably diminished upon CPT1A suppression. Finally, our <em>in vivo</em> studies confirmed that SLC31A1 deficiency re-sensitized TAM-resistant breast cancer cells to TAM treatment and abolished tumor growth. Collectively, all our studies demonstrated that SLC31A1/copper suppression could enhance TAM responses for chemoresistant ER-positive breast cancer cells through constraining the CPT1A-mediated FAO process.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"61 ","pages":"Article 101125"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558625000041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Over 60% of breast cancer cases are diagnosed with estrogen-receptor (ER) positive. Tamoxifen (TAM), a commonly employed medication for ER-positive breast cancer, often yields suboptimal therapeutic outcomes due to the emergence of TAM resistance, leading to the recurrence and a poor prognosis. The copper transporter, solute carrier family 31 member 1 (SLC31A1), has been associated with tumor aggressiveness and unfavorable outcomes in various types of tumors. In our current study, we found high expression of SLC31A1 that predicted poor survival in patients with breast cancer. Significantly, ER-positive breast cancer tissues in patients with recurrence post-TAM treatment exhibited considerably stronger SLC31A1 expression levels. In vitro experiments verified that TAM-resistant ER-positive breast cancer cell lines expressed notably higher SLC31A1 levels compared to the parental cell lines. Of great significance, SLC31A1 depletion notably rescued TAM sensitivity in chemoresistant ER-positive breast cancer cells, as demonstrated by the attenuated cell proliferative and invasive capabilities. Conversely, promoting SLC31A1 significantly facilitated the proliferation and invasion of wild-type breast cancer cells. Subsequently, we detected reduced copper levels in TAM-resistant breast cancer cells with SLC31A1 depletion. Mechanistically, we observed that in chemoresistant breast cancer cell lines, SLC31A1 knockdown resulted in a substantial decrease in the expression of carnitine palmitoyltransferase 1A (CPT1A), a rate-limiting enzyme of fatty acid oxidation (FAO). RNA-Seq analysis indicated that FAO might be implicated in SLC31A1-mediated breast cancer progression. CPT1A was also overexpressed in TAM-resistant breast cancer cells, accompanied by enhanced FAO rates and ATP levels. Suppressing CPT1A significantly enhanced the chemosensitivity of TAM-resistant breast cancer cells in response to TAM treatments. Intriguingly, copper exposure dose-dependently increased CPT1A expression in chemoresistant breast cancer cells, but this could be abolished upon SLC31A1 knockdown, along with enhanced apoptosis, which elucidated that copper uptake contributed to CPT1A expression. Furthermore, SLC31A1 overexpression significantly augmented CPT1A expression in parental breast cancer cells, accompanied by facilitated copper levels, FAO rates, and ATP levels, while being notably diminished upon CPT1A suppression. Finally, our in vivo studies confirmed that SLC31A1 deficiency re-sensitized TAM-resistant breast cancer cells to TAM treatment and abolished tumor growth. Collectively, all our studies demonstrated that SLC31A1/copper suppression could enhance TAM responses for chemoresistant ER-positive breast cancer cells through constraining the CPT1A-mediated FAO process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neoplasia
Neoplasia 医学-肿瘤学
CiteScore
9.20
自引率
2.10%
发文量
82
审稿时长
26 days
期刊介绍: Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.
期刊最新文献
Targeting BARD1 suppresses a Myc-dependent transcriptional program and tumor growth in pancreatic ductal adenocarcinoma Granulocyte-macrophage colony-stimulating factor for newly diagnosed glioblastoma LSD1+8a is an RNA biomarker of neuroendocrine prostate cancer Targeting PAR1 activation in JAK2V617F-driven philadelphia-negative myeloproliferative neoplasms: Unraveling its role in thrombosis and disease progression O-GlcNAc-modified HOXA9 suppresses ferroptosis via promoting UBR5-mediated SIRT6 degradation in nasopharyngeal carcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1