{"title":"UAV-assisted mobile edge computing model for cognitive radio-based IoT networks","authors":"Hisham M. Almasaeid","doi":"10.1016/j.comcom.2025.108071","DOIUrl":null,"url":null,"abstract":"<div><div>The explosive growth in Internet of Things (IoT) in terms of number of applications and deployed devices has created many challenges over the past decade. Among the most critical of which are the increasing demand on spectrum resources, the growing computation and data processing cost, and the limited energy resources. In this paper, we present a model for IoT networks that incorporates the technologies of cognitive radio (CR), mobile edge computing (MEC), unmanned aerial vehicles (UAVs), and radio-frequency energy harvesting to address the aforementioned challenges. In this model, UAVs provide computation and energy recharging services to IoT devices. These services can be requested/delivered through multiple spectrum bands by exploiting the CR technology. Specifically, aim at scheduling the task offloading and energy transmission/harvesting activities over time and frequency so that the maximum energy consumption rate among IoT devices is minimized. A mixed integer linear program was formulated to find such schedule. A greedy sub-optimal algorithm was also proposed, where our results show that it is within <span><math><mrow><mo>≈</mo><mn>11</mn><mtext>%</mtext></mrow></math></span> of the optimal solution.</div><div>We also investigate the maximum energy consumption rate among IoT devices under several settings regarding number of UAV MEC servers, task size, task offloading cost, and task local computation cost.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"233 ","pages":"Article 108071"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366425000283","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The explosive growth in Internet of Things (IoT) in terms of number of applications and deployed devices has created many challenges over the past decade. Among the most critical of which are the increasing demand on spectrum resources, the growing computation and data processing cost, and the limited energy resources. In this paper, we present a model for IoT networks that incorporates the technologies of cognitive radio (CR), mobile edge computing (MEC), unmanned aerial vehicles (UAVs), and radio-frequency energy harvesting to address the aforementioned challenges. In this model, UAVs provide computation and energy recharging services to IoT devices. These services can be requested/delivered through multiple spectrum bands by exploiting the CR technology. Specifically, aim at scheduling the task offloading and energy transmission/harvesting activities over time and frequency so that the maximum energy consumption rate among IoT devices is minimized. A mixed integer linear program was formulated to find such schedule. A greedy sub-optimal algorithm was also proposed, where our results show that it is within of the optimal solution.
We also investigate the maximum energy consumption rate among IoT devices under several settings regarding number of UAV MEC servers, task size, task offloading cost, and task local computation cost.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.