In situ synthesis of Mo-doped carbon-coated NiCo2S4 nanosheet networks for supercapacitors

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Electrochemistry Communications Pub Date : 2025-01-01 DOI:10.1016/j.elecom.2024.107853
Kaiyu Wang , Fan Zhou , Jiangnan Chu , Wenchong Ouyang , Kun Wang , Zhengwei Wu
{"title":"In situ synthesis of Mo-doped carbon-coated NiCo2S4 nanosheet networks for supercapacitors","authors":"Kaiyu Wang ,&nbsp;Fan Zhou ,&nbsp;Jiangnan Chu ,&nbsp;Wenchong Ouyang ,&nbsp;Kun Wang ,&nbsp;Zhengwei Wu","doi":"10.1016/j.elecom.2024.107853","DOIUrl":null,"url":null,"abstract":"<div><div>Supercapacitors offer numerous advantages, including high power output, quick charging and discharging rates, and stable cycling performance. Nevertheless, their energy density and cycle life still fall short of current industry demands for energy storage. To address these challenges, this work fabricated nanostructured electrodes by synthesizing molybdenum-doped carbon-coated NiCo<sub>2</sub>S<sub>4</sub> (C@NiCo<sub>2</sub>S<sub>4</sub>-Mo), using NiCo<sub>2</sub>S<sub>4</sub> as the precursor. The doping of molybdenum, a transition metal with many oxidation states, significantly improved the electronic structure and stability of the electrode material. Additionally, incorporating a carbon-coated structure enhanced the material’s stability during cycling, extending its operational lifespan. The results demonstrated that C@NiCo<sub>2</sub>S<sub>4</sub>-Mo exhibited exceptional electrochemical properties, featuring a defined capacitance of 931.75 Farad/g under the current flux of 1 A/g. This high specific capacitance value, a vital factor regarding capacitor performance, directly influences the energy storage capacity of the device, indicating the high potential of the C@NiCo<sub>2</sub>S<sub>4</sub>-Mo material for supercapacitors. It was observed that the particular capacity retention was 76.6 % when the current density was increased by a factor of 10. The substance also showed favorable pseudocapacitive characteristics, retaining 87.7 % of its particular capacitance after prolonged cycling in cyclic voltammetry (CV) tests, highlighting its outstanding cyclic stability. Furthermore, supercapacitors constructed from C@NiCo<sub>2</sub>S<sub>4</sub>-Mo achieved an energy density of 14.5 Wh/kg at a power density of 700 kW/kg, making them promising candidates for energy storage applications.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"170 ","pages":"Article 107853"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001966","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Supercapacitors offer numerous advantages, including high power output, quick charging and discharging rates, and stable cycling performance. Nevertheless, their energy density and cycle life still fall short of current industry demands for energy storage. To address these challenges, this work fabricated nanostructured electrodes by synthesizing molybdenum-doped carbon-coated NiCo2S4 (C@NiCo2S4-Mo), using NiCo2S4 as the precursor. The doping of molybdenum, a transition metal with many oxidation states, significantly improved the electronic structure and stability of the electrode material. Additionally, incorporating a carbon-coated structure enhanced the material’s stability during cycling, extending its operational lifespan. The results demonstrated that C@NiCo2S4-Mo exhibited exceptional electrochemical properties, featuring a defined capacitance of 931.75 Farad/g under the current flux of 1 A/g. This high specific capacitance value, a vital factor regarding capacitor performance, directly influences the energy storage capacity of the device, indicating the high potential of the C@NiCo2S4-Mo material for supercapacitors. It was observed that the particular capacity retention was 76.6 % when the current density was increased by a factor of 10. The substance also showed favorable pseudocapacitive characteristics, retaining 87.7 % of its particular capacitance after prolonged cycling in cyclic voltammetry (CV) tests, highlighting its outstanding cyclic stability. Furthermore, supercapacitors constructed from C@NiCo2S4-Mo achieved an energy density of 14.5 Wh/kg at a power density of 700 kW/kg, making them promising candidates for energy storage applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
期刊最新文献
Editorial Board Tuning initial pH to decrease salt ion transport in saltwater electrolysis Investigation of local corrosion behavior and mechanism for TA2/HAl77-2/316L SS coupling systems under seawater liquid film Electrochemical production of methanol and hydrogen from biomass waste Effect of deformation temperature on microstructure and corrosion properties of hot-compressed 347H stainless steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1