A new approach to the reasons for dependency of defects formation to the process parameters in laser powder bed fusion of IN625 on the IN738LC substrate

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Advanced Joining Processes Pub Date : 2024-12-17 DOI:10.1016/j.jajp.2024.100273
Amirhossein Riazi , Seyed Hossein Razavi , Alireza Khavandi , Mostafa Amirjan , Mohsen Ostad Shabani , Hossein Davarzani
{"title":"A new approach to the reasons for dependency of defects formation to the process parameters in laser powder bed fusion of IN625 on the IN738LC substrate","authors":"Amirhossein Riazi ,&nbsp;Seyed Hossein Razavi ,&nbsp;Alireza Khavandi ,&nbsp;Mostafa Amirjan ,&nbsp;Mohsen Ostad Shabani ,&nbsp;Hossein Davarzani","doi":"10.1016/j.jajp.2024.100273","DOIUrl":null,"url":null,"abstract":"<div><div>Degradation is a common phenomenon in gas turbine components. Among additive manufacturing (AM) methods like direct laser deposition (DLD) and laser powder bed fusion (LPBF), DLD has been widely studied due to its ease in repair processes. However, LPBF offers higher dimensional accuracy, better surface quality, and reduced stress. This study employed LPBF of IN625 on an IN738 substrate for repair purposes. A wide range of process parameters (power at 100, 150, and 200 W and scan speeds between 100 mm/s to 2700 mm/s) was evaluated. The reasons behind process parameters' influence on defect formation, such as pores and cracks, were investigated, as these aspects have been less emphasized in prior studies. The relationship between process parameters, melt pool shape, pore formation, and changes in elemental concentration was explored. It was found that concentration peaks at the interface are the main factor in crack formation, enabling predictions of cracking behavior. Elements diffuse from rich to poor regions at the IN625/IN738 interface. At scan speeds ≤ 500 mm/s, increasing speed and power both increase elemental concentration at the interface, but speed promotes elemental accumulation behind the interface, while power enhances homogenization. The effect of process parameters on microhardness and cell size was also examined. It was determined that cracks do not form in softer nickel-based matrices where microhardness remains below the critical threshold of 256 HV.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100273"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266633092400089X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Degradation is a common phenomenon in gas turbine components. Among additive manufacturing (AM) methods like direct laser deposition (DLD) and laser powder bed fusion (LPBF), DLD has been widely studied due to its ease in repair processes. However, LPBF offers higher dimensional accuracy, better surface quality, and reduced stress. This study employed LPBF of IN625 on an IN738 substrate for repair purposes. A wide range of process parameters (power at 100, 150, and 200 W and scan speeds between 100 mm/s to 2700 mm/s) was evaluated. The reasons behind process parameters' influence on defect formation, such as pores and cracks, were investigated, as these aspects have been less emphasized in prior studies. The relationship between process parameters, melt pool shape, pore formation, and changes in elemental concentration was explored. It was found that concentration peaks at the interface are the main factor in crack formation, enabling predictions of cracking behavior. Elements diffuse from rich to poor regions at the IN625/IN738 interface. At scan speeds ≤ 500 mm/s, increasing speed and power both increase elemental concentration at the interface, but speed promotes elemental accumulation behind the interface, while power enhances homogenization. The effect of process parameters on microhardness and cell size was also examined. It was determined that cracks do not form in softer nickel-based matrices where microhardness remains below the critical threshold of 256 HV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
期刊最新文献
Mechanical properties and microstructure of the C70600 copper-nickel alloy and C46500 brass joint using brazing technique Friction stir welding of dissimilar aluminum and copper alloys: A review of strategies for enhancing joint quality Effect of cooling rate on metallurgical and mechanical properties in continuous wave laser welding of hot-dip galvanised steel-to-aluminium sheets in a zero part-to-part gap lap joint configuration The role of force and torque in friction stir welding: A detailed review Microstructural and defect characterization in single beads of the CrMnFeCoNi high-entropy alloy processed by the multi-beam laser directed energy deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1