{"title":"Ultrasonic-assisted press-fitting: A superior method for reducing press-fit force compared to conventional press-fitting","authors":"Hamed Razavi , Hamid Reza Masoumi","doi":"10.1016/j.jajp.2025.100282","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of ultrasonic vibrations on the press-fitting process, aiming to reduce the maximum press-fit force required in mechanical assemblies. Press-fitting involves inserting a pin into a bushing of a slightly smaller diameter, leading to high press-fit forces, which is crucial in the analysis and performance assessment of the process. The research investigates the effects of assembly speed and ultrasonic vibration power on the reduction of press-fit force. Through a series of 15 distinct experiments employing both conventional press-fitting (CPF) and ultrasonic-assisted press-fitting (UAPF), it was found that increasing the power of ultrasonic vibrations leads to a significant decrease in the maximum press-fit force, whereas reducing the assembly speed has a minor effect. The maximum press-fit force is reduced by over 80 % when utilizing maximum vibration power. The findings indicate that the UAPF method is a promising technique to reduce the maximum press-fit force, thus improving the feasibility of the press-fitting process. This research has significant implications for the manufacturing industry, enabling the assembly of sensitive parts without excessive force and improving the overall assembly performance.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100282"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the impact of ultrasonic vibrations on the press-fitting process, aiming to reduce the maximum press-fit force required in mechanical assemblies. Press-fitting involves inserting a pin into a bushing of a slightly smaller diameter, leading to high press-fit forces, which is crucial in the analysis and performance assessment of the process. The research investigates the effects of assembly speed and ultrasonic vibration power on the reduction of press-fit force. Through a series of 15 distinct experiments employing both conventional press-fitting (CPF) and ultrasonic-assisted press-fitting (UAPF), it was found that increasing the power of ultrasonic vibrations leads to a significant decrease in the maximum press-fit force, whereas reducing the assembly speed has a minor effect. The maximum press-fit force is reduced by over 80 % when utilizing maximum vibration power. The findings indicate that the UAPF method is a promising technique to reduce the maximum press-fit force, thus improving the feasibility of the press-fitting process. This research has significant implications for the manufacturing industry, enabling the assembly of sensitive parts without excessive force and improving the overall assembly performance.