Ultrasonic-assisted press-fitting: A superior method for reducing press-fit force compared to conventional press-fitting

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Advanced Joining Processes Pub Date : 2025-01-10 DOI:10.1016/j.jajp.2025.100282
Hamed Razavi , Hamid Reza Masoumi
{"title":"Ultrasonic-assisted press-fitting: A superior method for reducing press-fit force compared to conventional press-fitting","authors":"Hamed Razavi ,&nbsp;Hamid Reza Masoumi","doi":"10.1016/j.jajp.2025.100282","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of ultrasonic vibrations on the press-fitting process, aiming to reduce the maximum press-fit force required in mechanical assemblies. Press-fitting involves inserting a pin into a bushing of a slightly smaller diameter, leading to high press-fit forces, which is crucial in the analysis and performance assessment of the process. The research investigates the effects of assembly speed and ultrasonic vibration power on the reduction of press-fit force. Through a series of 15 distinct experiments employing both conventional press-fitting (CPF) and ultrasonic-assisted press-fitting (UAPF), it was found that increasing the power of ultrasonic vibrations leads to a significant decrease in the maximum press-fit force, whereas reducing the assembly speed has a minor effect. The maximum press-fit force is reduced by over 80 % when utilizing maximum vibration power. The findings indicate that the UAPF method is a promising technique to reduce the maximum press-fit force, thus improving the feasibility of the press-fitting process. This research has significant implications for the manufacturing industry, enabling the assembly of sensitive parts without excessive force and improving the overall assembly performance.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100282"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of ultrasonic vibrations on the press-fitting process, aiming to reduce the maximum press-fit force required in mechanical assemblies. Press-fitting involves inserting a pin into a bushing of a slightly smaller diameter, leading to high press-fit forces, which is crucial in the analysis and performance assessment of the process. The research investigates the effects of assembly speed and ultrasonic vibration power on the reduction of press-fit force. Through a series of 15 distinct experiments employing both conventional press-fitting (CPF) and ultrasonic-assisted press-fitting (UAPF), it was found that increasing the power of ultrasonic vibrations leads to a significant decrease in the maximum press-fit force, whereas reducing the assembly speed has a minor effect. The maximum press-fit force is reduced by over 80 % when utilizing maximum vibration power. The findings indicate that the UAPF method is a promising technique to reduce the maximum press-fit force, thus improving the feasibility of the press-fitting process. This research has significant implications for the manufacturing industry, enabling the assembly of sensitive parts without excessive force and improving the overall assembly performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
期刊最新文献
Mechanical properties and microstructure of the C70600 copper-nickel alloy and C46500 brass joint using brazing technique Friction stir welding of dissimilar aluminum and copper alloys: A review of strategies for enhancing joint quality Effect of cooling rate on metallurgical and mechanical properties in continuous wave laser welding of hot-dip galvanised steel-to-aluminium sheets in a zero part-to-part gap lap joint configuration The role of force and torque in friction stir welding: A detailed review Microstructural and defect characterization in single beads of the CrMnFeCoNi high-entropy alloy processed by the multi-beam laser directed energy deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1