{"title":"Enhancing the weld quality of polyetheretherketone polymer cylinders using reducing pores in the weld interface","authors":"Chil-Chyuan Kuo , Xiao-Ze Xie , Chong-Xu Liao , Wen-Bin Huang , Yu-Jie Chen , Armaan Farooqui , Song-Hua Huang , Shih-Feng Tseng","doi":"10.1016/j.jajp.2025.100281","DOIUrl":null,"url":null,"abstract":"<div><div>Continuous drive friction welding (CDFW) is a highly efficient technique for fabricating large Polyether-ether-ketone (PEEK) components. However, the bending strength of welded specimens is often constrained by the formation of pores at the weld interface. Addressing this limitation, this study aims to enhance the bending strength of PEEK polymer cylinders by applying ultrasound-assisted continuous drive friction welding (UACDFW). To further improve joint performance, a novel post-compression technique is introduced and used after the welding process to increase the weld-bonded area. Additionally, image processing software is employed to evaluate and analyze the weld-bonded area ratio, comprehensively assessing the interfacial characteristics. Optimizing CDFW parameters increased the bending strength of the welded components from 201.6 MPa to 380.8 MPa and the joint area ratio from 77.54 % to 99.99 %. The optimized parameters include a rotational speed of 4000 rpm, a preheating time of 5 s, and a post-compression feed rate of 3.2 mm/s. The results demonstrate the potential of UACDFW and post-compression techniques as effective solutions for improving the mechanical performance and reliability of PEEK components in high-performance applications.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100281"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous drive friction welding (CDFW) is a highly efficient technique for fabricating large Polyether-ether-ketone (PEEK) components. However, the bending strength of welded specimens is often constrained by the formation of pores at the weld interface. Addressing this limitation, this study aims to enhance the bending strength of PEEK polymer cylinders by applying ultrasound-assisted continuous drive friction welding (UACDFW). To further improve joint performance, a novel post-compression technique is introduced and used after the welding process to increase the weld-bonded area. Additionally, image processing software is employed to evaluate and analyze the weld-bonded area ratio, comprehensively assessing the interfacial characteristics. Optimizing CDFW parameters increased the bending strength of the welded components from 201.6 MPa to 380.8 MPa and the joint area ratio from 77.54 % to 99.99 %. The optimized parameters include a rotational speed of 4000 rpm, a preheating time of 5 s, and a post-compression feed rate of 3.2 mm/s. The results demonstrate the potential of UACDFW and post-compression techniques as effective solutions for improving the mechanical performance and reliability of PEEK components in high-performance applications.