Enhancing the weld quality of polyetheretherketone polymer cylinders using reducing pores in the weld interface

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Advanced Joining Processes Pub Date : 2025-01-07 DOI:10.1016/j.jajp.2025.100281
Chil-Chyuan Kuo , Xiao-Ze Xie , Chong-Xu Liao , Wen-Bin Huang , Yu-Jie Chen , Armaan Farooqui , Song-Hua Huang , Shih-Feng Tseng
{"title":"Enhancing the weld quality of polyetheretherketone polymer cylinders using reducing pores in the weld interface","authors":"Chil-Chyuan Kuo ,&nbsp;Xiao-Ze Xie ,&nbsp;Chong-Xu Liao ,&nbsp;Wen-Bin Huang ,&nbsp;Yu-Jie Chen ,&nbsp;Armaan Farooqui ,&nbsp;Song-Hua Huang ,&nbsp;Shih-Feng Tseng","doi":"10.1016/j.jajp.2025.100281","DOIUrl":null,"url":null,"abstract":"<div><div>Continuous drive friction welding (CDFW) is a highly efficient technique for fabricating large Polyether-ether-ketone (PEEK) components. However, the bending strength of welded specimens is often constrained by the formation of pores at the weld interface. Addressing this limitation, this study aims to enhance the bending strength of PEEK polymer cylinders by applying ultrasound-assisted continuous drive friction welding (UACDFW). To further improve joint performance, a novel post-compression technique is introduced and used after the welding process to increase the weld-bonded area. Additionally, image processing software is employed to evaluate and analyze the weld-bonded area ratio, comprehensively assessing the interfacial characteristics. Optimizing CDFW parameters increased the bending strength of the welded components from 201.6 MPa to 380.8 MPa and the joint area ratio from 77.54 % to 99.99 %. The optimized parameters include a rotational speed of 4000 rpm, a preheating time of 5 s, and a post-compression feed rate of 3.2 mm/s. The results demonstrate the potential of UACDFW and post-compression techniques as effective solutions for improving the mechanical performance and reliability of PEEK components in high-performance applications.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100281"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous drive friction welding (CDFW) is a highly efficient technique for fabricating large Polyether-ether-ketone (PEEK) components. However, the bending strength of welded specimens is often constrained by the formation of pores at the weld interface. Addressing this limitation, this study aims to enhance the bending strength of PEEK polymer cylinders by applying ultrasound-assisted continuous drive friction welding (UACDFW). To further improve joint performance, a novel post-compression technique is introduced and used after the welding process to increase the weld-bonded area. Additionally, image processing software is employed to evaluate and analyze the weld-bonded area ratio, comprehensively assessing the interfacial characteristics. Optimizing CDFW parameters increased the bending strength of the welded components from 201.6 MPa to 380.8 MPa and the joint area ratio from 77.54 % to 99.99 %. The optimized parameters include a rotational speed of 4000 rpm, a preheating time of 5 s, and a post-compression feed rate of 3.2 mm/s. The results demonstrate the potential of UACDFW and post-compression techniques as effective solutions for improving the mechanical performance and reliability of PEEK components in high-performance applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
期刊最新文献
Mechanical properties and microstructure of the C70600 copper-nickel alloy and C46500 brass joint using brazing technique Friction stir welding of dissimilar aluminum and copper alloys: A review of strategies for enhancing joint quality Effect of cooling rate on metallurgical and mechanical properties in continuous wave laser welding of hot-dip galvanised steel-to-aluminium sheets in a zero part-to-part gap lap joint configuration The role of force and torque in friction stir welding: A detailed review Microstructural and defect characterization in single beads of the CrMnFeCoNi high-entropy alloy processed by the multi-beam laser directed energy deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1