Improvement of anti-loosening resistance of locking bolts based on single-coarse-thread/multiple-coarse-thread mechanism by using spring washer between nuts

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Advanced Joining Processes Pub Date : 2025-01-08 DOI:10.1016/j.jajp.2025.100280
Shuichi Amano , Toshinaka Shinbutsu , Yuki Okimoto , Teruie Takemasu , Toshihiko Kuwabara
{"title":"Improvement of anti-loosening resistance of locking bolts based on single-coarse-thread/multiple-coarse-thread mechanism by using spring washer between nuts","authors":"Shuichi Amano ,&nbsp;Toshinaka Shinbutsu ,&nbsp;Yuki Okimoto ,&nbsp;Teruie Takemasu ,&nbsp;Toshihiko Kuwabara","doi":"10.1016/j.jajp.2025.100280","DOIUrl":null,"url":null,"abstract":"<div><div>An innovative anti-loosening bolt with a double-thread mechanism (denoted as DTB-IIC) consisting of coaxial single and multiple coarse threads was previously devised and its structure and performance were optimized. The results of a previous study showed that increasing the bottom rise ratio <span><math><mi>β</mi></math></span>, which is the ratio of the bottom rise for the multi-thread groove to the thread height, to 70 % significantly improved the formability during the thread-rolling process, but clearly reduced the loosening resistance. In the present study, an attempt was made to address this problem in a simple manner by inserting a left-handed spring washer (SW) between the inner multi-thread nut and the outer single-thread nut. The value of <span><math><mi>β</mi></math></span> was set to 50 %, 60 %, or 70 %. Comparative Junker vibration loosening tests based on the ISO 16,130 standard were conducted and the change in the residual ratio for the axial load, <span><math><mi>κ</mi></math></span>, was evaluated. Without the SW, the final <span><math><mi>κ</mi></math></span> (<span><math><msub><mi>κ</mi><mi>f</mi></msub></math></span>) for <span><math><mrow><mi>β</mi><mo>=</mo><mn>50</mn><mspace></mspace><mo>%</mo></mrow></math></span> was above 90 %, while <span><math><msub><mi>κ</mi><mi>f</mi></msub></math></span> for <span><math><mrow><mi>β</mi><mo>=</mo><mn>60</mn><mspace></mspace><mo>%</mo></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>=</mo><mn>70</mn><mspace></mspace><mo>%</mo></mrow></math></span>, it was approximately 73 % and 64 %, respectively. Attachment of the SW caused an increase in <span><math><msub><mi>κ</mi><mi>f</mi></msub></math></span> for all <span><math><mi>β</mi></math></span> values, with a greater increase for larger <span><math><mi>β</mi></math></span>, reaching 82 % for <span><math><mi>β</mi></math></span> = 60 % and 75 % for <span><math><mi>β</mi></math></span> = 70 %, respectively. It was found that the contact force between the nuts is an indicator for determining the degree of locking between the DTB-IIC and the nut. The initial loosening process was simulated using a three-dimensional finite element method model, and the <span><math><mi>κ</mi></math></span> curves obtained in the analysis agreed well with the experimental results by setting the gap <span><math><mi>δ</mi></math></span> between the inner multi-thread nut and the DTB-IIC bolt in the range 0.125–0.15 mm. The simulation results indicated that there were clear differences in mating state between the outer nut and the DTB-IIC depending on the <span><math><mi>β</mi></math></span> value, and the use of a SW achieved a more robust locking state when <span><math><mi>β</mi></math></span> was 50 %.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100280"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An innovative anti-loosening bolt with a double-thread mechanism (denoted as DTB-IIC) consisting of coaxial single and multiple coarse threads was previously devised and its structure and performance were optimized. The results of a previous study showed that increasing the bottom rise ratio β, which is the ratio of the bottom rise for the multi-thread groove to the thread height, to 70 % significantly improved the formability during the thread-rolling process, but clearly reduced the loosening resistance. In the present study, an attempt was made to address this problem in a simple manner by inserting a left-handed spring washer (SW) between the inner multi-thread nut and the outer single-thread nut. The value of β was set to 50 %, 60 %, or 70 %. Comparative Junker vibration loosening tests based on the ISO 16,130 standard were conducted and the change in the residual ratio for the axial load, κ, was evaluated. Without the SW, the final κ (κf) for β=50% was above 90 %, while κf for β=60% and β=70%, it was approximately 73 % and 64 %, respectively. Attachment of the SW caused an increase in κf for all β values, with a greater increase for larger β, reaching 82 % for β = 60 % and 75 % for β = 70 %, respectively. It was found that the contact force between the nuts is an indicator for determining the degree of locking between the DTB-IIC and the nut. The initial loosening process was simulated using a three-dimensional finite element method model, and the κ curves obtained in the analysis agreed well with the experimental results by setting the gap δ between the inner multi-thread nut and the DTB-IIC bolt in the range 0.125–0.15 mm. The simulation results indicated that there were clear differences in mating state between the outer nut and the DTB-IIC depending on the β value, and the use of a SW achieved a more robust locking state when β was 50 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
期刊最新文献
Mechanical properties and microstructure of the C70600 copper-nickel alloy and C46500 brass joint using brazing technique Friction stir welding of dissimilar aluminum and copper alloys: A review of strategies for enhancing joint quality Effect of cooling rate on metallurgical and mechanical properties in continuous wave laser welding of hot-dip galvanised steel-to-aluminium sheets in a zero part-to-part gap lap joint configuration The role of force and torque in friction stir welding: A detailed review Microstructural and defect characterization in single beads of the CrMnFeCoNi high-entropy alloy processed by the multi-beam laser directed energy deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1