Ti and TiAlV foils enhanced with PLD and flash-deposited carbon: On cytocompatibility and antibacterial activity

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Advanced Joining Processes Pub Date : 2024-12-18 DOI:10.1016/j.jajp.2024.100274
Petr Slepička , Klaudia Hurtuková , Silvie Rimpelová , Šárka Trhoňová , Jiří Martan , Michal Procházka , Václav Švorčík , Nikola Slepičková Kasálková
{"title":"Ti and TiAlV foils enhanced with PLD and flash-deposited carbon: On cytocompatibility and antibacterial activity","authors":"Petr Slepička ,&nbsp;Klaudia Hurtuková ,&nbsp;Silvie Rimpelová ,&nbsp;Šárka Trhoňová ,&nbsp;Jiří Martan ,&nbsp;Michal Procházka ,&nbsp;Václav Švorčík ,&nbsp;Nikola Slepičková Kasálková","doi":"10.1016/j.jajp.2024.100274","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigated the effects of carbon layer deposition on titanium (Ti) and titanium alloy (TiAlV) substrates using \"flash\" vaporization and pulsed laser deposition (PLD) techniques. Raman spectroscopy revealed that the PLD method produced a higher sp3 carbon bond content than the evaporation method (61 vs<em>.</em> 47 %). Atomic force microscopy and surface wettability analyzes showed differences in surface roughness and contact angle, with PLD-deposited samples exhibiting enhanced hydrophilicity and wrinkled morphology. Subsequent laser annealing optimized surface properties by increasing hydrophobicity, which is critical for cell adhesion. Surface chemistry analysis via scanning electron microscopy and energy dispersive spectroscopy demonstrated significant carbon enrichment in the PLD-deposited samples, mainly for TiAlV substrate. Cytocompatibility tests using human osteosarcoma cells (U-2 OS) revealed varying cell adhesion and proliferation based on surface modification, with PLD-deposited layers promoting better cell interaction. Both carbon deposition techniques enhanced antibacterial effect. This suggests the potential of PLD-deposited carbon layers for biomedical applications, particularly in enhancing implant surfaces for improved cell growth and adhesion, and reduce bacteria, the nanostructured substrates may serve also for subsequent replication process into polymer.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100274"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330924000906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigated the effects of carbon layer deposition on titanium (Ti) and titanium alloy (TiAlV) substrates using "flash" vaporization and pulsed laser deposition (PLD) techniques. Raman spectroscopy revealed that the PLD method produced a higher sp3 carbon bond content than the evaporation method (61 vs. 47 %). Atomic force microscopy and surface wettability analyzes showed differences in surface roughness and contact angle, with PLD-deposited samples exhibiting enhanced hydrophilicity and wrinkled morphology. Subsequent laser annealing optimized surface properties by increasing hydrophobicity, which is critical for cell adhesion. Surface chemistry analysis via scanning electron microscopy and energy dispersive spectroscopy demonstrated significant carbon enrichment in the PLD-deposited samples, mainly for TiAlV substrate. Cytocompatibility tests using human osteosarcoma cells (U-2 OS) revealed varying cell adhesion and proliferation based on surface modification, with PLD-deposited layers promoting better cell interaction. Both carbon deposition techniques enhanced antibacterial effect. This suggests the potential of PLD-deposited carbon layers for biomedical applications, particularly in enhancing implant surfaces for improved cell growth and adhesion, and reduce bacteria, the nanostructured substrates may serve also for subsequent replication process into polymer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
期刊最新文献
Mechanical properties and microstructure of the C70600 copper-nickel alloy and C46500 brass joint using brazing technique Friction stir welding of dissimilar aluminum and copper alloys: A review of strategies for enhancing joint quality Effect of cooling rate on metallurgical and mechanical properties in continuous wave laser welding of hot-dip galvanised steel-to-aluminium sheets in a zero part-to-part gap lap joint configuration The role of force and torque in friction stir welding: A detailed review Microstructural and defect characterization in single beads of the CrMnFeCoNi high-entropy alloy processed by the multi-beam laser directed energy deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1