{"title":"SFQRA: Scaled factor-augmented quantile regression with aggregation in conditional mean forecasting","authors":"Lei Shu , Yifan Hao , Yu Chen , Qing Yang","doi":"10.1016/j.jmva.2024.105405","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving robust forecasts for a single time series with many covariates and possible nonlinear effects is a problem worth investigating. In this paper, a scaled factor-augmented quantile regression with aggregation (SFQRA) method is proposed for an effective prediction. It first estimates different conditional quantiles by introducing scaled covariates to the factor-augmented quantile regression, which not only combats the curse of dimensionality but also includes the target information in the estimation. Then the different conditional quantiles are aggregated appropriately to a robust forecast. Moreover, combining SFQRA with feature screening via an aggregated quantile correlation allows it to be extended to handle cases when only a portion of covariates is informative. The effectiveness of the proposed methods is justified theoretically, under the framework of large cross-sections and large time dimensions while no restriction is imposed on the relation between them. Various simulation studies and real data analyses demonstrate the superiority of the newly proposed method in forecasting.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"207 ","pages":"Article 105405"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X2400112X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving robust forecasts for a single time series with many covariates and possible nonlinear effects is a problem worth investigating. In this paper, a scaled factor-augmented quantile regression with aggregation (SFQRA) method is proposed for an effective prediction. It first estimates different conditional quantiles by introducing scaled covariates to the factor-augmented quantile regression, which not only combats the curse of dimensionality but also includes the target information in the estimation. Then the different conditional quantiles are aggregated appropriately to a robust forecast. Moreover, combining SFQRA with feature screening via an aggregated quantile correlation allows it to be extended to handle cases when only a portion of covariates is informative. The effectiveness of the proposed methods is justified theoretically, under the framework of large cross-sections and large time dimensions while no restriction is imposed on the relation between them. Various simulation studies and real data analyses demonstrate the superiority of the newly proposed method in forecasting.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.