Sequential estimation of high-dimensional signal plus noise models under general elliptical frameworks

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2024-12-30 DOI:10.1016/j.jmva.2024.105403
Li Yanpeng , Xie Jiahui , Zhou Guoliang , Zhou Wang
{"title":"Sequential estimation of high-dimensional signal plus noise models under general elliptical frameworks","authors":"Li Yanpeng ,&nbsp;Xie Jiahui ,&nbsp;Zhou Guoliang ,&nbsp;Zhou Wang","doi":"10.1016/j.jmva.2024.105403","DOIUrl":null,"url":null,"abstract":"<div><div>High dimensional data analysis has attracted considerable interest and is facing new challenges, one of which is the increasingly available data with noise corrupted and in a streaming manner, such as signals and stocks. In this paper, we develop a sequential method to dynamically update the estimates of signal and noise strength in signal plus noise models. The proposed sequential method is easy to compute based on the stored statistics and the current data point. The consistency and, more importantly, the asymptotic normality of the estimators of signal strength and noise level are demonstrated for high dimensional settings under mild conditions. Simulations and real data examples are further provided to illustrate the practical utility of our proposal.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"207 ","pages":"Article 105403"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24001106","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

High dimensional data analysis has attracted considerable interest and is facing new challenges, one of which is the increasingly available data with noise corrupted and in a streaming manner, such as signals and stocks. In this paper, we develop a sequential method to dynamically update the estimates of signal and noise strength in signal plus noise models. The proposed sequential method is easy to compute based on the stored statistics and the current data point. The consistency and, more importantly, the asymptotic normality of the estimators of signal strength and noise level are demonstrated for high dimensional settings under mild conditions. Simulations and real data examples are further provided to illustrate the practical utility of our proposal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Semiparametric density estimation with localized Bregman divergence Tree-structured Markov random fields with Poisson marginal distributions Model averaging for global Fréchet regression Classification using global and local Mahalanobis distances Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1