{"title":"High-dimensional projection-based ANOVA test","authors":"Weihao Yu , Qi Zhang , Weiyu Li","doi":"10.1016/j.jmva.2024.105401","DOIUrl":null,"url":null,"abstract":"<div><div>In bioinformation and medicine, an enormous amount of high-dimensional multi-population data is collected. For the inference of several-samples mean problem, traditional tests do not perform well and many new theories mainly focus on normal distribution and low correlation assumptions. Motivated by the weighted sign test, we propose two projection-based tests which are robust against the choice of correlation matrix. One test utilizes Scheffe’s transformation to generate a group of new samples and derives the optimal projection direction. The other test is adaptive to projection direction and is generalized to the assumption of the whole elliptical distribution and independent component model. Further the theoretical properties are deduced and numerical experiments are carried out to examine the finite sample performance. They show that our tests outperform others under certain circumstances.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"207 ","pages":"Article 105401"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24001088","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In bioinformation and medicine, an enormous amount of high-dimensional multi-population data is collected. For the inference of several-samples mean problem, traditional tests do not perform well and many new theories mainly focus on normal distribution and low correlation assumptions. Motivated by the weighted sign test, we propose two projection-based tests which are robust against the choice of correlation matrix. One test utilizes Scheffe’s transformation to generate a group of new samples and derives the optimal projection direction. The other test is adaptive to projection direction and is generalized to the assumption of the whole elliptical distribution and independent component model. Further the theoretical properties are deduced and numerical experiments are carried out to examine the finite sample performance. They show that our tests outperform others under certain circumstances.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.