{"title":"Effect of concentration and period on the transient pool boiling heat transfer of Fe3O4-based aqueous nanofluids","authors":"Abutaleb Ramezani , Ahmadreza Faghih Khorasani , Ahmadreza Ayoobi","doi":"10.1016/j.expthermflusci.2024.111404","DOIUrl":null,"url":null,"abstract":"<div><div>The high conductivity of metal nanoparticles and the flowability of the base fluid led to significant changes in heat transfer rates when ferrofluids are used in the boiling process. Pool boiling tests were conducted in this study using Fe<sub>3</sub>O<sub>4</sub>/water ferrofluid at concentrations of 0.01 %, 0.05 %, and 0.1 % under transient conditions lasting from 1 s to 5000 s. In the present study, the ferrofluid was prepared through a two-step process. A horizontal nickel-chrome wire served as the heater and the heat flux was assessed as a quadratic polynomial function for each period, with a linear increase in applied voltage. Results showed that increasing nanoparticle concentration accelerates the onset of nucleate boiling (ONB) and raises critical heat flux (CHF) by up to 137 %. However, longer periods lead to delayed ONB, increased superheat temperature, a maximum 25 % reduction in CHF, and a maximum 96 % reduction in heat transfer coefficient at the CHF point in any given nanoparticle concentration. at concentrations of 0.01 %, 0.05 %, and 0.1 %, the heat transfer coefficient at the CHF point experiences a decline of 96.5 %, 95.15 %, and 89.7 %, respectively, with an increased period compared to the baseline period of t = 1 s.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"163 ","pages":"Article 111404"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724002735","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The high conductivity of metal nanoparticles and the flowability of the base fluid led to significant changes in heat transfer rates when ferrofluids are used in the boiling process. Pool boiling tests were conducted in this study using Fe3O4/water ferrofluid at concentrations of 0.01 %, 0.05 %, and 0.1 % under transient conditions lasting from 1 s to 5000 s. In the present study, the ferrofluid was prepared through a two-step process. A horizontal nickel-chrome wire served as the heater and the heat flux was assessed as a quadratic polynomial function for each period, with a linear increase in applied voltage. Results showed that increasing nanoparticle concentration accelerates the onset of nucleate boiling (ONB) and raises critical heat flux (CHF) by up to 137 %. However, longer periods lead to delayed ONB, increased superheat temperature, a maximum 25 % reduction in CHF, and a maximum 96 % reduction in heat transfer coefficient at the CHF point in any given nanoparticle concentration. at concentrations of 0.01 %, 0.05 %, and 0.1 %, the heat transfer coefficient at the CHF point experiences a decline of 96.5 %, 95.15 %, and 89.7 %, respectively, with an increased period compared to the baseline period of t = 1 s.
期刊介绍:
Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.