{"title":"Experimental investigation of Dean-vortices oscillation downstream of a 90° Bend","authors":"Bilal Ben Haroual , Julie Albagnac , Pierre Brancher , Sébastien Cazin , Didier Boldo , Emmanuel Thibert , Romain Mathis","doi":"10.1016/j.expthermflusci.2024.111402","DOIUrl":null,"url":null,"abstract":"<div><div>The present work experimentally investigates the dynamics of a pipe flow downstream of a 90° bend in turbulent regime. The study is carried out on two different test benches, enabling to cover a decade in Reynolds numbers (<span><math><mrow><mi>R</mi><mi>e</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>.</mo><mn>2</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup><mo>,</mo><mspace></mspace><mn>5</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup><mo>]</mo></mrow></mrow></math></span>). Laser-based metrology techniques are employed to capture the three velocity components in several flow sections, namely, cross-sections orthogonal to the main flow and vertical diametral planes (parallel to the main flow direction). Time-resolved and long-time decorrelated measurements allow the characterisation of both the dynamics and the statistics of the flow. These measurements highlight the behaviour of the fully three-dimensional flow generated downstream of the bend. In particular, an oscillation of the dipolar structure generated by the bend, known as the Dean vortices, is measured and analysed using a Lamb–Chaplygin analytical model. The dependency of the flow behaviour as a function of both the Reynolds number and the distance downstream of the bend and the return to axisymmetric flow are evaluated.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"163 ","pages":"Article 111402"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724002711","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present work experimentally investigates the dynamics of a pipe flow downstream of a 90° bend in turbulent regime. The study is carried out on two different test benches, enabling to cover a decade in Reynolds numbers (). Laser-based metrology techniques are employed to capture the three velocity components in several flow sections, namely, cross-sections orthogonal to the main flow and vertical diametral planes (parallel to the main flow direction). Time-resolved and long-time decorrelated measurements allow the characterisation of both the dynamics and the statistics of the flow. These measurements highlight the behaviour of the fully three-dimensional flow generated downstream of the bend. In particular, an oscillation of the dipolar structure generated by the bend, known as the Dean vortices, is measured and analysed using a Lamb–Chaplygin analytical model. The dependency of the flow behaviour as a function of both the Reynolds number and the distance downstream of the bend and the return to axisymmetric flow are evaluated.
期刊介绍:
Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.