Evolution of droplet freezing front and surface temperature on cold surface under forced convection

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Experimental Thermal and Fluid Science Pub Date : 2025-01-10 DOI:10.1016/j.expthermflusci.2025.111410
Xueqiang Yuan , Duo Zhang , Yuan Wang , Yu Pan , Weidong Liu
{"title":"Evolution of droplet freezing front and surface temperature on cold surface under forced convection","authors":"Xueqiang Yuan ,&nbsp;Duo Zhang ,&nbsp;Yuan Wang ,&nbsp;Yu Pan ,&nbsp;Weidong Liu","doi":"10.1016/j.expthermflusci.2025.111410","DOIUrl":null,"url":null,"abstract":"<div><div>The evolution of freezing front and surface temperature in droplet freezing process under forced convection condition was studied. The influence mechanism of convective heat transfer on the droplet freezing front was explored through the surface temperature change. A prediction model for droplet freezing under forced convection was established by considering the effect of convective heat transfer. The results indicated that in the peak freezing mode, the rise of the freezing front is driven by the heat conduction of the cold surface, while in the peakless freezing mode, the freezing front will reach thermal equilibrium, and its movement is driven by the frost induced inter-droplet nucleation. Affected by the force-convective heat transfer, the temperature difference inside the droplet increases significantly. The higher droplet surface temperature on the windward makes the freezing front and isotherm tilt towards the windward. As airflow velocity increase, the larger convective heat transfer leads to slower temperature decrease in the solidification stage. By analyzing the freezing front moving process on the windward and leeward separately, the evolution of the freezing front and solidification time can be predicted accurately by the model for the peak freezing mode, and the calculated critical criterion for freezing mode transition agrees well with the experimental results.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"163 ","pages":"Article 111410"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725000044","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of freezing front and surface temperature in droplet freezing process under forced convection condition was studied. The influence mechanism of convective heat transfer on the droplet freezing front was explored through the surface temperature change. A prediction model for droplet freezing under forced convection was established by considering the effect of convective heat transfer. The results indicated that in the peak freezing mode, the rise of the freezing front is driven by the heat conduction of the cold surface, while in the peakless freezing mode, the freezing front will reach thermal equilibrium, and its movement is driven by the frost induced inter-droplet nucleation. Affected by the force-convective heat transfer, the temperature difference inside the droplet increases significantly. The higher droplet surface temperature on the windward makes the freezing front and isotherm tilt towards the windward. As airflow velocity increase, the larger convective heat transfer leads to slower temperature decrease in the solidification stage. By analyzing the freezing front moving process on the windward and leeward separately, the evolution of the freezing front and solidification time can be predicted accurately by the model for the peak freezing mode, and the calculated critical criterion for freezing mode transition agrees well with the experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
期刊最新文献
An assessment of event-based imaging velocimetry for efficient estimation of low-dimensional coordinates in turbulent flows Editorial Board Corrigendum to “A study on the wake structure of an ascending submersible with silk flexible appendages using continuous wavelet transform and dynamic mode decomposition” [Exp. Therm. Fluid Sci. 160 (2025) 111323] Aerodynamic characterisation of isolated cycling wheels Experimental investigation of shock train oscillation suppression by a plasma jet in a supersonic isolator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1