Caroline Brachmann , Lena Noack , Philipp Alexander Baumeister , Frank Sohl
{"title":"Distinct types of C-H-O-N atmospheres and surface pressures depending on melt redox state and outgassing efficiency","authors":"Caroline Brachmann , Lena Noack , Philipp Alexander Baumeister , Frank Sohl","doi":"10.1016/j.icarus.2024.116450","DOIUrl":null,"url":null,"abstract":"<div><div>After the magma ocean state, secondary atmospheres build up via early volcanic degassing of planetary interiors. The terrestrial planets Venus, Earth, and Mars are believed to have originated from similar source material but reveal distinct present-day atmospheric compositions, pressures, and temperatures. To investigate how such diverse atmospheres emerge, we have built a three-step model coupling mantle and atmospheric composition. The model incorporates mantle melting, melt ascent, and volcanic degassing. Additionally, it includes atmospheric equilibrium chemistry, taking into account processes such as water condensation and hydrogen escape. Key parameters such as mantle oxygen fugacity, melt production rates, surface temperature, and volatile abundance in the mantle, were varied to understand their impact on atmospheric composition and pressure. For reduced mantles with redox states below IW +1, atmospheric pressures remain strongly limited to a maximum of 2 bar due to the outgassing of predominantly light species that are prone to atmospheric escape or condensation. Above IW +1, atmospheric pressure can reach several tens of bars depending on the outgassing efficiency. For high-pressure atmospheres, CO<sub>2</sub> is the main atmospheric species observed in our models. For oxidized low-pressure atmospheres, depending on temperature, atmospheres can be either water-rich or also CO<sub>2</sub>-dominated. For reducing atmospheres, nitrogen species tend to dominate the atmospheres, with NH<sub>3</sub> for colder atmospheres and N<sub>2</sub> for warmer atmospheres. CH<sub>4</sub> becomes dominant only in a narrow parameter space at redox states around IW +0.5 to IW +2 and is favored by lower atmospheric temperatures.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"429 ","pages":"Article 116450"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524005104","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
After the magma ocean state, secondary atmospheres build up via early volcanic degassing of planetary interiors. The terrestrial planets Venus, Earth, and Mars are believed to have originated from similar source material but reveal distinct present-day atmospheric compositions, pressures, and temperatures. To investigate how such diverse atmospheres emerge, we have built a three-step model coupling mantle and atmospheric composition. The model incorporates mantle melting, melt ascent, and volcanic degassing. Additionally, it includes atmospheric equilibrium chemistry, taking into account processes such as water condensation and hydrogen escape. Key parameters such as mantle oxygen fugacity, melt production rates, surface temperature, and volatile abundance in the mantle, were varied to understand their impact on atmospheric composition and pressure. For reduced mantles with redox states below IW +1, atmospheric pressures remain strongly limited to a maximum of 2 bar due to the outgassing of predominantly light species that are prone to atmospheric escape or condensation. Above IW +1, atmospheric pressure can reach several tens of bars depending on the outgassing efficiency. For high-pressure atmospheres, CO2 is the main atmospheric species observed in our models. For oxidized low-pressure atmospheres, depending on temperature, atmospheres can be either water-rich or also CO2-dominated. For reducing atmospheres, nitrogen species tend to dominate the atmospheres, with NH3 for colder atmospheres and N2 for warmer atmospheres. CH4 becomes dominant only in a narrow parameter space at redox states around IW +0.5 to IW +2 and is favored by lower atmospheric temperatures.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.