{"title":"Abrasion experiments of mineral, rock, and meteorite particles: Simulating regolith particles abrasion on airless bodies","authors":"Akira Tsuchiyama , Hirotaka Yamaguchi , Motohiro Ogawa , Akiko M. Nakamura , Tatsuhiro Michikami , Kentaro Uesugi","doi":"10.1016/j.icarus.2024.116432","DOIUrl":null,"url":null,"abstract":"<div><div>The shape of regolith particles on airless bodies, such as the Moon and asteroids, reflects the processes that occur on their surfaces. Recent studies have shown that particles on the asteroid Ryugu tend to be angular, whereas some particles on the asteroid Itokawa are rounded, with a larger portions of lunar particles also exhibiting a rounded shape. These differences are thought to result from abrasion, but experimental studies on particle abrasion have been lacking. In this study, we performed experiments simulating the abrasion caused by impact on airless bodies using minerals, rocks, and meteorites related to the Moon and asteroids. Aggregates of particles ranging in size from 1 to 2 mm (6.5 to10 g) were subjected to oscillation in a bead-milling apparatus to assess the amount of abrasion at different oscillation rates, varying from 100 to 3000 rpm for 0.33 to 720 min. The amount of abrasion increased with time and oscillation rate, following a power-law relationship. Once the oscillation rate exceeded a certain threshold, abrasion proceeded rapidly. At rates above 1000 rpm, particles floated and rubbed against each other due to the vertical oscillation of the container, leading to significant abrasion, whereas at rates below 300 rpm, the particles were constrained by Earth's gravity, resulting in minimal abrasion. This indicates that experiments conducted at ≥1000 rpm effectively simulated the abrasion that occurs on the Moon and asteroids. Scanning electron microscopy was used to observe the particles before and after the experiments, and X-ray microtomography was employed to track the shape changes of individual traceable particles and to measure the three-axial lengths of approximately160 particles. As abrasion progressed, some of the corners and edges of the particles were initially chipped, eventually leading to rounded corners, edges, and surfaces. This process corresponds to “adhesive wear” in tribology, which is caused by tangential relative motion between materials. In carbonaceous chondrite samples, particles tended to split along pre-existing cracks. The particles became smaller, their angularity decreased, and their sphericity increased, while the overall 3D shape of individual particles did not significantly change from their original form; however, the average three-axial ratio became more isotropic. These results indicate that the change in the average three-axial ratio of the Moon and Itokawa regolith particles can be explained by abrasion, as previously proposed. Based on the observed abrasion rates, we discuss the potential for abrasion to be caused by the impact-induced particle motion on the Moon and asteroids, considering models of regolith convection, excavation flow, and maximum acceleration. Although this discussion is rough and only semi-quantitative due to many assumptions, experimental errors, and uncertainties in the models, the results suggest that abrasion can occur on the Moon due to impact-induced particle motion, and that the abrasion observed on Itokawa particles may have occurred not on Itokawa itself, but on its parent body. Ryugu particles, in contrast, are more prone to cracking along pre-existing cracks rather than undergoing significant abrasion, and thus exhibit minimal signs of abrasion.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"429 ","pages":"Article 116432"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524004925","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The shape of regolith particles on airless bodies, such as the Moon and asteroids, reflects the processes that occur on their surfaces. Recent studies have shown that particles on the asteroid Ryugu tend to be angular, whereas some particles on the asteroid Itokawa are rounded, with a larger portions of lunar particles also exhibiting a rounded shape. These differences are thought to result from abrasion, but experimental studies on particle abrasion have been lacking. In this study, we performed experiments simulating the abrasion caused by impact on airless bodies using minerals, rocks, and meteorites related to the Moon and asteroids. Aggregates of particles ranging in size from 1 to 2 mm (6.5 to10 g) were subjected to oscillation in a bead-milling apparatus to assess the amount of abrasion at different oscillation rates, varying from 100 to 3000 rpm for 0.33 to 720 min. The amount of abrasion increased with time and oscillation rate, following a power-law relationship. Once the oscillation rate exceeded a certain threshold, abrasion proceeded rapidly. At rates above 1000 rpm, particles floated and rubbed against each other due to the vertical oscillation of the container, leading to significant abrasion, whereas at rates below 300 rpm, the particles were constrained by Earth's gravity, resulting in minimal abrasion. This indicates that experiments conducted at ≥1000 rpm effectively simulated the abrasion that occurs on the Moon and asteroids. Scanning electron microscopy was used to observe the particles before and after the experiments, and X-ray microtomography was employed to track the shape changes of individual traceable particles and to measure the three-axial lengths of approximately160 particles. As abrasion progressed, some of the corners and edges of the particles were initially chipped, eventually leading to rounded corners, edges, and surfaces. This process corresponds to “adhesive wear” in tribology, which is caused by tangential relative motion between materials. In carbonaceous chondrite samples, particles tended to split along pre-existing cracks. The particles became smaller, their angularity decreased, and their sphericity increased, while the overall 3D shape of individual particles did not significantly change from their original form; however, the average three-axial ratio became more isotropic. These results indicate that the change in the average three-axial ratio of the Moon and Itokawa regolith particles can be explained by abrasion, as previously proposed. Based on the observed abrasion rates, we discuss the potential for abrasion to be caused by the impact-induced particle motion on the Moon and asteroids, considering models of regolith convection, excavation flow, and maximum acceleration. Although this discussion is rough and only semi-quantitative due to many assumptions, experimental errors, and uncertainties in the models, the results suggest that abrasion can occur on the Moon due to impact-induced particle motion, and that the abrasion observed on Itokawa particles may have occurred not on Itokawa itself, but on its parent body. Ryugu particles, in contrast, are more prone to cracking along pre-existing cracks rather than undergoing significant abrasion, and thus exhibit minimal signs of abrasion.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.