Impact of litter quality on soil nematode communities with the intensifies of grassland degradation: Shifting from resource input to environmental stress

IF 2 3区 农林科学 Q3 ECOLOGY Pedobiologia Pub Date : 2025-02-01 DOI:10.1016/j.pedobi.2025.151021
Pingting Guan , Mengya Chen , Jianan Li , Junqi Zuo , Shitong Wei , Donghui Wu
{"title":"Impact of litter quality on soil nematode communities with the intensifies of grassland degradation: Shifting from resource input to environmental stress","authors":"Pingting Guan ,&nbsp;Mengya Chen ,&nbsp;Jianan Li ,&nbsp;Junqi Zuo ,&nbsp;Shitong Wei ,&nbsp;Donghui Wu","doi":"10.1016/j.pedobi.2025.151021","DOIUrl":null,"url":null,"abstract":"<div><div>Litter quality determines the resource input from aboveground processes in regulating soil biota function in degraded grassland. However, the knowledge of litter quality along with the degradation on the contribution to the soil biota remains sparse, particularly across different trophic groups, given their varying demands for food resources. A 240-day decomposition experiment was conducted to investigate the effect of the litter quality (high-quality and low-quality litters) on soil nematode communities at different intensities of grassland degradation (light, moderate and heavy). The results showed that, even though degradation induced the abundance of microbivorous nematode, the high trophic group nematode reduction was the primary factor that caused the decrease of top-down control from omnivore-predator (OP). Moreover, the metabolic footprint of omnivore-predator was more sensitive than its abundance with OP footprint taking over 40 % of the total footprint while its abundance taking 15 % of total abundance at the light degradation. At the light degraded level, high-quality litter promoted abundance and metabolic footprint of OP nematodes by 69.37 % and 88.27 %, respectively, compared to low-quality litter. These changes in the nematode communities and functions were primarily determined by the N resource change resulting from litter quality. On the contrary, at the moderate and heavy degraded levels, the execrable soil conditions, characterized by high soil pH, simplified the nematode food web. Therefore, the environmental stress screening on soil nematode communities from degradation exceeded the bottom-up effect from litter input. These results suggested that the community structure determined by long-term harsh soil conditions required more attention on the fundamental approach to soil quality rather than litter quality alone. It is critical to adapt appropriate management practices for rehabilitation in the maintenance of belowground communities in grassland restoration.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"108 ","pages":"Article 151021"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405625000022","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Litter quality determines the resource input from aboveground processes in regulating soil biota function in degraded grassland. However, the knowledge of litter quality along with the degradation on the contribution to the soil biota remains sparse, particularly across different trophic groups, given their varying demands for food resources. A 240-day decomposition experiment was conducted to investigate the effect of the litter quality (high-quality and low-quality litters) on soil nematode communities at different intensities of grassland degradation (light, moderate and heavy). The results showed that, even though degradation induced the abundance of microbivorous nematode, the high trophic group nematode reduction was the primary factor that caused the decrease of top-down control from omnivore-predator (OP). Moreover, the metabolic footprint of omnivore-predator was more sensitive than its abundance with OP footprint taking over 40 % of the total footprint while its abundance taking 15 % of total abundance at the light degradation. At the light degraded level, high-quality litter promoted abundance and metabolic footprint of OP nematodes by 69.37 % and 88.27 %, respectively, compared to low-quality litter. These changes in the nematode communities and functions were primarily determined by the N resource change resulting from litter quality. On the contrary, at the moderate and heavy degraded levels, the execrable soil conditions, characterized by high soil pH, simplified the nematode food web. Therefore, the environmental stress screening on soil nematode communities from degradation exceeded the bottom-up effect from litter input. These results suggested that the community structure determined by long-term harsh soil conditions required more attention on the fundamental approach to soil quality rather than litter quality alone. It is critical to adapt appropriate management practices for rehabilitation in the maintenance of belowground communities in grassland restoration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pedobiologia
Pedobiologia 环境科学-生态学
CiteScore
4.20
自引率
8.70%
发文量
38
审稿时长
64 days
期刊介绍: Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments. Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions. We publish: original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects); descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research; innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and short notes reporting novel observations of ecological significance.
期刊最新文献
Editorial Board Organic matter content rather than farming practices modulates microbial activities in vineyard soils Food choice and pharyngeal pumping activity of bacterial-feeding nematodes are driven by different functional traits A field mesocosm method for manipulation of soil mesofauna communities and repeated measurement of their ecological functions over months to years Responses of N2O production and associated functional genes to increasing temperature and moisture in surface and subsurface soils of a temperate forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1