Saliva-acquired pellicle inspired multifunctional gargle with wet adhesion, photodynamic antimicrobial, and In situ remineralization properties for dental caries prevention
Jiayi Shi , Xuekai Qi , Ying Ran , Qiang Zhou , Yiqin Ding , Lujian Li , Youyun Zeng , Dongchao Qiu , Zhibin Cai , Xiaojun Cai , Yihuai Pan
{"title":"Saliva-acquired pellicle inspired multifunctional gargle with wet adhesion, photodynamic antimicrobial, and In situ remineralization properties for dental caries prevention","authors":"Jiayi Shi , Xuekai Qi , Ying Ran , Qiang Zhou , Yiqin Ding , Lujian Li , Youyun Zeng , Dongchao Qiu , Zhibin Cai , Xiaojun Cai , Yihuai Pan","doi":"10.1016/j.bioactmat.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><div>Dental caries is primarily caused by cariogenic bacteria metabolizing carbohydrates to produce acidic substances that erode the dental hard tissues. Traditional remineralization treatments often have limited efficacy due to their lack of antibacterial activity. According to the Interrupting Dental Caries (IDC) theory, ideal caries-preventive materials should possess both antibacterial and remineralizing properties. Furthermore, effective adhesion to dental surfaces is crucial. Inspired by the wet adhesion properties of the salivary acquired pellicle, we developed a multifunctional gargle named Ce6@PDN-SAP (CP-SAP). This formulation employed peptide dendrimer nanogels (PDN) as a carrier for the photosensitizer Ce6, further functionalized with saliva-acquired peptide (SAP) to confer wet adhesion properties. CP-SAP rapidly adhered to the dental surface and remained effective for extended periods. Upon laser irradiation, Ce6 generated reactive oxygen species (ROS), disrupting bacterial outer membrane integrity, causing protein leakage, and reducing ATP levels, thereby achieving potent antibacterial effects. Following this, PDN and SAP acted as nucleation templates to promote in situ remineralization of demineralized dental hard tissues. In vivo studies using rat models demonstrated that CP-SAP provided significantly superior caries-preventive effects compared to chlorhexidine gargle. In conclusion, CP-SAP, as an innovative approach grounded in the IDC theory, holds great promise for the prevention and treatment of dental caries.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"47 ","pages":"Pages 212-228"},"PeriodicalIF":18.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000088","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Dental caries is primarily caused by cariogenic bacteria metabolizing carbohydrates to produce acidic substances that erode the dental hard tissues. Traditional remineralization treatments often have limited efficacy due to their lack of antibacterial activity. According to the Interrupting Dental Caries (IDC) theory, ideal caries-preventive materials should possess both antibacterial and remineralizing properties. Furthermore, effective adhesion to dental surfaces is crucial. Inspired by the wet adhesion properties of the salivary acquired pellicle, we developed a multifunctional gargle named Ce6@PDN-SAP (CP-SAP). This formulation employed peptide dendrimer nanogels (PDN) as a carrier for the photosensitizer Ce6, further functionalized with saliva-acquired peptide (SAP) to confer wet adhesion properties. CP-SAP rapidly adhered to the dental surface and remained effective for extended periods. Upon laser irradiation, Ce6 generated reactive oxygen species (ROS), disrupting bacterial outer membrane integrity, causing protein leakage, and reducing ATP levels, thereby achieving potent antibacterial effects. Following this, PDN and SAP acted as nucleation templates to promote in situ remineralization of demineralized dental hard tissues. In vivo studies using rat models demonstrated that CP-SAP provided significantly superior caries-preventive effects compared to chlorhexidine gargle. In conclusion, CP-SAP, as an innovative approach grounded in the IDC theory, holds great promise for the prevention and treatment of dental caries.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.