Fabrication, characterization, and application of complex essential oils loaded bilayer films using PLA and pickering emulsions with SPI-chitosan nanoparticles as solid support
{"title":"Fabrication, characterization, and application of complex essential oils loaded bilayer films using PLA and pickering emulsions with SPI-chitosan nanoparticles as solid support","authors":"Liangliang Zhang , Hanbo Yi , Saisai Feng , Mengmeng Zhang , Yu Wu , Jiahui Hao , Xuefang Liu , Jianguo Xu","doi":"10.1016/j.fpsl.2024.101426","DOIUrl":null,"url":null,"abstract":"<div><div>Chitosan (CS) and polylactic acid (PLA) are both commonly used packaging materials in the food industry. However, a bilayer film made from CS and PLA, simultaneously incorporated with a complex essential oil-loaded Pickering emulsion (PE) system, have not been widely investigated. Therefore, this study designed bilayer films consisting of PLA layer and a PE layer. In the PE layer, binary nanoparticles composed of soybean protein isolate (SPI) and CS were used as solid supports to load increasing amounts (0 %, 2 %, 4 %, 6 %, 8 %, v/v) of complex essential oils (carvacrol and thymol, CT). The films were labeled BF-CT0, BF-CT2, BF-CT4, BF-CT6, and BF-CT8. The characteristics and functional properties were evaluated, along with the quality changes in refrigerated pork wrapped with the films (BF-CT0 or BF-CT8). Results indicated that CT addition significantly enhanced the stability of the PE. The PE layer with higher CT doses exhibited a denser microstructure, more hydrophobic surface, improved elongation at break, and greater water resistance. CT addition significantly improved light and gas barrier functions. Notably, the BF-CT8 film demonstrated extremely low water vapor and oxygen permeability (1.25 ± 0.06 kg•m⁻¹•s⁻¹•Pa⁻¹ and 0.24 ± 0.01 kg•m⁻¹•s⁻¹•bar⁻¹, respectively). All films showed a similar semi-crystalline structure, and CT addition decreased crystallinity. As expected, BF-CT8 displayed enhanced antioxidant and antibacterial performance. Finally, BF-CT8 extended the shelf life of refrigerated pork from 3 days to 6 days compared to BF-CT0 and unwrapped pork. In conclusion, the bilayer film shows great potential for use in pork preservation.</div></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":"47 ","pages":"Article 101426"},"PeriodicalIF":8.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289424001911","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chitosan (CS) and polylactic acid (PLA) are both commonly used packaging materials in the food industry. However, a bilayer film made from CS and PLA, simultaneously incorporated with a complex essential oil-loaded Pickering emulsion (PE) system, have not been widely investigated. Therefore, this study designed bilayer films consisting of PLA layer and a PE layer. In the PE layer, binary nanoparticles composed of soybean protein isolate (SPI) and CS were used as solid supports to load increasing amounts (0 %, 2 %, 4 %, 6 %, 8 %, v/v) of complex essential oils (carvacrol and thymol, CT). The films were labeled BF-CT0, BF-CT2, BF-CT4, BF-CT6, and BF-CT8. The characteristics and functional properties were evaluated, along with the quality changes in refrigerated pork wrapped with the films (BF-CT0 or BF-CT8). Results indicated that CT addition significantly enhanced the stability of the PE. The PE layer with higher CT doses exhibited a denser microstructure, more hydrophobic surface, improved elongation at break, and greater water resistance. CT addition significantly improved light and gas barrier functions. Notably, the BF-CT8 film demonstrated extremely low water vapor and oxygen permeability (1.25 ± 0.06 kg•m⁻¹•s⁻¹•Pa⁻¹ and 0.24 ± 0.01 kg•m⁻¹•s⁻¹•bar⁻¹, respectively). All films showed a similar semi-crystalline structure, and CT addition decreased crystallinity. As expected, BF-CT8 displayed enhanced antioxidant and antibacterial performance. Finally, BF-CT8 extended the shelf life of refrigerated pork from 3 days to 6 days compared to BF-CT0 and unwrapped pork. In conclusion, the bilayer film shows great potential for use in pork preservation.
期刊介绍:
Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.