Towards combining self-organizing maps (SOM) and convolutional neural network (CNN) for improving model accuracy: Application to malaria vectors phenotypic resistance
Komi Mensah Agboka , Elfatih M. Abdel-Rahman , Daisy Salifu , Brian Kanji , Frank T. Ndjomatchoua , Ritter A.Y. Guimapi , Sunday Ekesi , Landmann Tobias
{"title":"Towards combining self-organizing maps (SOM) and convolutional neural network (CNN) for improving model accuracy: Application to malaria vectors phenotypic resistance","authors":"Komi Mensah Agboka , Elfatih M. Abdel-Rahman , Daisy Salifu , Brian Kanji , Frank T. Ndjomatchoua , Ritter A.Y. Guimapi , Sunday Ekesi , Landmann Tobias","doi":"10.1016/j.mex.2025.103198","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a hybrid approach that combines unsupervised self-organizing maps (SOM) with a supervised convolutional neural network (CNN) to enhance model accuracy in vector-borne disease modeling. We applied this method to predict insecticide resistance (IR) status in key malaria vectors across Africa. Our results show that the combined SOM/CNN approach is more robust than a standalone CNN model, achieving higher overall accuracy and Kappa scores among others. This confirms the potential of the SOM/CNN hybrid as an effective and reliable tool for improving model accuracy in public health applications.<ul><li><span>•</span><span><div>The hybrid model, combining SOM and CNN, was implemented to predict IR status in malaria vectors, providing enhanced accuracy across various validation metrics.</div></span></li><li><span>•</span><span><div>Results indicate a notable improvement in robustness and predictive accuracy over traditional CNN models.</div></span></li><li><span>•</span><span><div>The combined SOM/CNN approach demonstrated higher Kappa scores and overall model accuracy.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103198"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a hybrid approach that combines unsupervised self-organizing maps (SOM) with a supervised convolutional neural network (CNN) to enhance model accuracy in vector-borne disease modeling. We applied this method to predict insecticide resistance (IR) status in key malaria vectors across Africa. Our results show that the combined SOM/CNN approach is more robust than a standalone CNN model, achieving higher overall accuracy and Kappa scores among others. This confirms the potential of the SOM/CNN hybrid as an effective and reliable tool for improving model accuracy in public health applications.
•
The hybrid model, combining SOM and CNN, was implemented to predict IR status in malaria vectors, providing enhanced accuracy across various validation metrics.
•
Results indicate a notable improvement in robustness and predictive accuracy over traditional CNN models.
•
The combined SOM/CNN approach demonstrated higher Kappa scores and overall model accuracy.