Prediction on the fatigue behavior of Ti–6Al–4V components treated by split sleeve cold expansion with different final reaming depth

IF 4.4 2区 工程技术 Q1 MECHANICS European Journal of Mechanics A-Solids Pub Date : 2025-01-18 DOI:10.1016/j.euromechsol.2025.105578
Zhangchi Dang , Li Yan , Xuedong Gan , Dongyun Ge
{"title":"Prediction on the fatigue behavior of Ti–6Al–4V components treated by split sleeve cold expansion with different final reaming depth","authors":"Zhangchi Dang ,&nbsp;Li Yan ,&nbsp;Xuedong Gan ,&nbsp;Dongyun Ge","doi":"10.1016/j.euromechsol.2025.105578","DOIUrl":null,"url":null,"abstract":"<div><div>The fatigue life of fastening holes in metal components is a critical issue in structural design. Many methods have been proposed to enhance the fatigue performance of the components, among which the split sleeve cold expansion method is an effective and widely used one. Previous research has shown that the final reaming process will increase the residual stress level in the components, but this does not always improve the fatigue life. Therefore, this paper presents a comprehensive study of the residual stress distribution in the components treated by the split sleeve cold expansion technique and also estimates the fatigue life of the components using numerical methods with a new mean stress correction model specifically modified for Ti–6Al–4V alloy. The calculation results agreed with the previous experiments well and the changing pattern of fatigue life to the reaming depth is acquired, which shows that a small ratio of reaming benefits the fatigue life by providing extra compressive stress, but the benefit of excessive reaming on residual stress does not bring about further life extension. This phenomenon can be well explained using the proposed four-area model of the cumulative damage in the components. Apart from increasing the residual stress level near the hole edge, the reaming process will cause another area with maximum tensile stress to move inward and bear a higher level of load, which is harmful to the fatigue life. The movement of the fatigue crack initiation area is also in good agreement with the experimental results, which verifies the reliability of the proposed model.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"111 ","pages":"Article 105578"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825000129","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The fatigue life of fastening holes in metal components is a critical issue in structural design. Many methods have been proposed to enhance the fatigue performance of the components, among which the split sleeve cold expansion method is an effective and widely used one. Previous research has shown that the final reaming process will increase the residual stress level in the components, but this does not always improve the fatigue life. Therefore, this paper presents a comprehensive study of the residual stress distribution in the components treated by the split sleeve cold expansion technique and also estimates the fatigue life of the components using numerical methods with a new mean stress correction model specifically modified for Ti–6Al–4V alloy. The calculation results agreed with the previous experiments well and the changing pattern of fatigue life to the reaming depth is acquired, which shows that a small ratio of reaming benefits the fatigue life by providing extra compressive stress, but the benefit of excessive reaming on residual stress does not bring about further life extension. This phenomenon can be well explained using the proposed four-area model of the cumulative damage in the components. Apart from increasing the residual stress level near the hole edge, the reaming process will cause another area with maximum tensile stress to move inward and bear a higher level of load, which is harmful to the fatigue life. The movement of the fatigue crack initiation area is also in good agreement with the experimental results, which verifies the reliability of the proposed model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
期刊最新文献
A stress approach model for elastodynamic problems of functionally graded plates Analysis of a prismatic elastic contact of finite length Prediction of complex modulus for asphalt concrete based on micromechanics considering interaction among randomly oriented aggregates C0 FEM approximation for the thermal buckling analysis of thin plates: Lagrange Multiplier and Penalty Methods Advanced finite element approaches for the 2D analysis of multilayered composite and sandwich beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1