Preparation and performance analysis of a novel double-layer sandwich composite structure

IF 4.4 2区 工程技术 Q1 MECHANICS European Journal of Mechanics A-Solids Pub Date : 2024-12-19 DOI:10.1016/j.euromechsol.2024.105545
Caixia Jia , Zhuo Zhang , Qian Wang , Yunpeng Qiu , Zhixin Li , Bowen Feng
{"title":"Preparation and performance analysis of a novel double-layer sandwich composite structure","authors":"Caixia Jia ,&nbsp;Zhuo Zhang ,&nbsp;Qian Wang ,&nbsp;Yunpeng Qiu ,&nbsp;Zhixin Li ,&nbsp;Bowen Feng","doi":"10.1016/j.euromechsol.2024.105545","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a novel double-layer sandwich composite structure was designed based on the synergistic integration of a trapezoidal corrugation (TC) core and a double arrow (DA) core. A combination of experiment and simulation was employed to analyze the flexural performance of the new sandwich structure and reveal its unique failure mechanism. As the double-layer sandwich composite structure containing trapezoidal corrugation &amp; double arrow (C&amp;A) core was able to avoid large bending deformation through the stiffness advantage of the lower DA core and reduce the debonding damage between the core and the panel, the upper TC core was capable of absorbing energy stably through core collapse under bending loads. Results showed that the load-displacement curve of the double-layer sandwich structure with C&amp;A cores experienced two load peaks with increasing displacement, and the later peak was higher than the first peak, and when compared with the two single-layer sandwich structures with TC core and DA core, the load efficiency of the double-layer sandwich structure was improved by 164.53% and 185.49%, while the specific energy absorption was improved by 87.43% and 71.40%, respectively.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"111 ","pages":"Article 105545"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824003255","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel double-layer sandwich composite structure was designed based on the synergistic integration of a trapezoidal corrugation (TC) core and a double arrow (DA) core. A combination of experiment and simulation was employed to analyze the flexural performance of the new sandwich structure and reveal its unique failure mechanism. As the double-layer sandwich composite structure containing trapezoidal corrugation & double arrow (C&A) core was able to avoid large bending deformation through the stiffness advantage of the lower DA core and reduce the debonding damage between the core and the panel, the upper TC core was capable of absorbing energy stably through core collapse under bending loads. Results showed that the load-displacement curve of the double-layer sandwich structure with C&A cores experienced two load peaks with increasing displacement, and the later peak was higher than the first peak, and when compared with the two single-layer sandwich structures with TC core and DA core, the load efficiency of the double-layer sandwich structure was improved by 164.53% and 185.49%, while the specific energy absorption was improved by 87.43% and 71.40%, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
期刊最新文献
A stress approach model for elastodynamic problems of functionally graded plates Analysis of a prismatic elastic contact of finite length Prediction of complex modulus for asphalt concrete based on micromechanics considering interaction among randomly oriented aggregates C0 FEM approximation for the thermal buckling analysis of thin plates: Lagrange Multiplier and Penalty Methods Advanced finite element approaches for the 2D analysis of multilayered composite and sandwich beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1