Improving extrapolation capabilities of a data-driven prediction model for control of an air separation unit

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-11-30 DOI:10.1016/j.compchemeng.2024.108953
Valentin Krespach , Nicolas Blum , Martin Pottmann , Sebastian Rehfeldt , Harald Klein
{"title":"Improving extrapolation capabilities of a data-driven prediction model for control of an air separation unit","authors":"Valentin Krespach ,&nbsp;Nicolas Blum ,&nbsp;Martin Pottmann ,&nbsp;Sebastian Rehfeldt ,&nbsp;Harald Klein","doi":"10.1016/j.compchemeng.2024.108953","DOIUrl":null,"url":null,"abstract":"<div><div>In model predictive control, fully data-driven prediction models can be used besides common (non-)linear prediction models based on first-principles. Although no process knowledge is required while relying only on sufficient data, they suffer in their extrapolation capability which is shown in the present work for the control of an air separation unit. In order to compensate for the deficits in the extrapolation behavior, a further data source, here a digital twin, is deployed for additional data generation. The plant data set is augmented with the artificially generated data giving rise to a hybrid model in terms of data generation. It is shown that this model can significantly improve the prediction quality in former extrapolation areas of the plant data set. Even conclusions about the uncertainty behavior of the prediction model can be found.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108953"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003715","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In model predictive control, fully data-driven prediction models can be used besides common (non-)linear prediction models based on first-principles. Although no process knowledge is required while relying only on sufficient data, they suffer in their extrapolation capability which is shown in the present work for the control of an air separation unit. In order to compensate for the deficits in the extrapolation behavior, a further data source, here a digital twin, is deployed for additional data generation. The plant data set is augmented with the artificially generated data giving rise to a hybrid model in terms of data generation. It is shown that this model can significantly improve the prediction quality in former extrapolation areas of the plant data set. Even conclusions about the uncertainty behavior of the prediction model can be found.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Advanced data-driven fault detection in gas-to-liquid plants A synchronous data-driven hybrid framework for optimizing hydrotreating units and hydrogen networks under uncertainty Editorial Board Predicting the temperature-dependent CMC of surfactant mixtures with graph neural networks Application of a temporal multiscale method for efficient simulation of degradation in PEM Water Electrolysis under dynamic operating conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1