Improving extrapolation capabilities of a data-driven prediction model for control of an air separation unit

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-11-30 DOI:10.1016/j.compchemeng.2024.108953
Valentin Krespach , Nicolas Blum , Martin Pottmann , Sebastian Rehfeldt , Harald Klein
{"title":"Improving extrapolation capabilities of a data-driven prediction model for control of an air separation unit","authors":"Valentin Krespach ,&nbsp;Nicolas Blum ,&nbsp;Martin Pottmann ,&nbsp;Sebastian Rehfeldt ,&nbsp;Harald Klein","doi":"10.1016/j.compchemeng.2024.108953","DOIUrl":null,"url":null,"abstract":"<div><div>In model predictive control, fully data-driven prediction models can be used besides common (non-)linear prediction models based on first-principles. Although no process knowledge is required while relying only on sufficient data, they suffer in their extrapolation capability which is shown in the present work for the control of an air separation unit. In order to compensate for the deficits in the extrapolation behavior, a further data source, here a digital twin, is deployed for additional data generation. The plant data set is augmented with the artificially generated data giving rise to a hybrid model in terms of data generation. It is shown that this model can significantly improve the prediction quality in former extrapolation areas of the plant data set. Even conclusions about the uncertainty behavior of the prediction model can be found.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108953"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003715","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In model predictive control, fully data-driven prediction models can be used besides common (non-)linear prediction models based on first-principles. Although no process knowledge is required while relying only on sufficient data, they suffer in their extrapolation capability which is shown in the present work for the control of an air separation unit. In order to compensate for the deficits in the extrapolation behavior, a further data source, here a digital twin, is deployed for additional data generation. The plant data set is augmented with the artificially generated data giving rise to a hybrid model in terms of data generation. It is shown that this model can significantly improve the prediction quality in former extrapolation areas of the plant data set. Even conclusions about the uncertainty behavior of the prediction model can be found.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进空气分离装置控制数据驱动预测模型的外推能力
在模型预测控制中,除了常用的基于第一性原理的非线性预测模型外,还可以采用完全数据驱动的预测模型。虽然仅依靠足够的数据不需要工艺知识,但它们的外推能力受到影响,这在目前的空分装置控制工作中得到了体现。为了弥补外推行为中的缺陷,部署了一个进一步的数据源,这里是一个数字孪生,用于额外的数据生成。工厂数据集通过人工生成的数据进行扩充,从而在数据生成方面产生混合模型。结果表明,该模型可以显著提高植物数据集前外推区域的预测质量。甚至可以得出预测模型的不确定性行为的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
YANNs: Y-wise affine neural networks for exact and efficient representations of piecewise linear functions Unlocking reactive power potential of industrial processes for voltage support through scheduling optimization Superstructure modeling and optimization of dynamic processes applied to high-performance liquid chromatography with recycling Partial least-squares model adaptation by bootstrap resampling PSFCL: A Probabilistic Slow Feature Contrastive Learning approach for incipient fault diagnosis in industrial processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1