A novel methodology for affecting the strain paths during hydraulic bulge tests by means of laser heat treatments

IF 4.4 2区 工程技术 Q1 MECHANICS European Journal of Mechanics A-Solids Pub Date : 2025-01-07 DOI:10.1016/j.euromechsol.2025.105569
A. Cusanno , D. Carty , G. Palumbo
{"title":"A novel methodology for affecting the strain paths during hydraulic bulge tests by means of laser heat treatments","authors":"A. Cusanno ,&nbsp;D. Carty ,&nbsp;G. Palumbo","doi":"10.1016/j.euromechsol.2025.105569","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, the design of manufacturing processes is supported by numerical simulations, that require an understanding of the material forming limits under the process conditions. The hydraulic bulge test represents an effective and well-established experimental procedure to evaluate critical strains of a material. However, it relies on using different elliptical die geometries to vary strain paths, introducing limitations in experimental flexibility. This work aims to evaluate the feasibility of achieving different strain paths during hydraulic bulge tests only using a circular die, by pre-softening certain zones of the testing blank using laser heating. The laser heat treatments (LHTs) were designed using a numerical/experimental approach. Two LHT strategies using different laser power values were performed to locally modify the material properties. Then, hydraulic bulge tests were conducted on the LHTed specimens and the resulting strain paths were analysed. The strain paths acquired during hydraulic bulge tests confirmed the possibility to affect the slope of the strain path at the dome by changing the LHT strategy, designed with the proposed methodology.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"111 ","pages":"Article 105569"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825000038","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the design of manufacturing processes is supported by numerical simulations, that require an understanding of the material forming limits under the process conditions. The hydraulic bulge test represents an effective and well-established experimental procedure to evaluate critical strains of a material. However, it relies on using different elliptical die geometries to vary strain paths, introducing limitations in experimental flexibility. This work aims to evaluate the feasibility of achieving different strain paths during hydraulic bulge tests only using a circular die, by pre-softening certain zones of the testing blank using laser heating. The laser heat treatments (LHTs) were designed using a numerical/experimental approach. Two LHT strategies using different laser power values were performed to locally modify the material properties. Then, hydraulic bulge tests were conducted on the LHTed specimens and the resulting strain paths were analysed. The strain paths acquired during hydraulic bulge tests confirmed the possibility to affect the slope of the strain path at the dome by changing the LHT strategy, designed with the proposed methodology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
期刊最新文献
A stress approach model for elastodynamic problems of functionally graded plates Analysis of a prismatic elastic contact of finite length Prediction of complex modulus for asphalt concrete based on micromechanics considering interaction among randomly oriented aggregates C0 FEM approximation for the thermal buckling analysis of thin plates: Lagrange Multiplier and Penalty Methods Advanced finite element approaches for the 2D analysis of multilayered composite and sandwich beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1