Qiuyan Bi , Fen Lu , Jie Wu , Xiangyu Liu , Xiuying Han , Jianjiang Zhao
{"title":"The control effect and induced disease resistance mechanism of Bacillus tequilensis on wheat powdery mildew","authors":"Qiuyan Bi , Fen Lu , Jie Wu , Xiangyu Liu , Xiuying Han , Jianjiang Zhao","doi":"10.1016/j.biocontrol.2025.105698","DOIUrl":null,"url":null,"abstract":"<div><div><em>Blumeria graminis</em> f. sp. <em>Tritici</em> causes wheat powdery mildew (WPM) and severe wheat damage worldwide. To prevent WPM and emerging chemical fungicide resistance, researchers investigated the control effectiveness and induced disease resistance mechanisms of the biocontrol agent <em>Bacillus tequilensis</em>. Its inhibitory effect was determined via an <em>in vitro</em> method combined with microscopic observation, and the control effect was clarified via pot and field verification. Using transcriptome technology, we determined the differences in wheat gene expression in after treatment with <em>B. tequilensis</em> and verified the main molecular mechanism of <em>B. tequilensis</em>-induced resistance. The effects on wheat defence enzymes were clarified via physiological and biochemical techniques. The results revealed that <em>B. tequilensis</em> controlled WPM at an effective concentration of 1 × 10<sup>7</sup> cfu/mL or higher. The inhibitory effect <em>in vitro</em> was 90.91–100.00 %. The potted control effect was 92.98–100.00 %. The field control effect was 83.21–100.00 %. Transcriptome sequencing analysis revealed 1,472 significantly upregulated genes and 1,995 downregulated genes. The differentially expressed genes were enriched in several pathways related to amino acid biosynthesis and metabolism. The expression levels of actin-7-like, lipoxygenase, linoleic acid 9S-lipoxygenase 6-like, pathogenesis-related protein PR-1-like, superoxide dismutase, phenylalanine ammonia lyase and polyphenol oxidase were significantly increased. The relative enzymic activities induced by <em>B. tequilensis</em> presented maximum differences between 2.63-fold and 3.43-fold. Our results suggest that <em>B. tequilensis</em> combats WPM by inducing systemic acquired resistance in wheat, helps elucidate biological agent targeted control mechanisms and provides a foundation for field application.</div></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"201 ","pages":"Article 105698"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Control","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049964425000088","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Blumeria graminis f. sp. Tritici causes wheat powdery mildew (WPM) and severe wheat damage worldwide. To prevent WPM and emerging chemical fungicide resistance, researchers investigated the control effectiveness and induced disease resistance mechanisms of the biocontrol agent Bacillus tequilensis. Its inhibitory effect was determined via an in vitro method combined with microscopic observation, and the control effect was clarified via pot and field verification. Using transcriptome technology, we determined the differences in wheat gene expression in after treatment with B. tequilensis and verified the main molecular mechanism of B. tequilensis-induced resistance. The effects on wheat defence enzymes were clarified via physiological and biochemical techniques. The results revealed that B. tequilensis controlled WPM at an effective concentration of 1 × 107 cfu/mL or higher. The inhibitory effect in vitro was 90.91–100.00 %. The potted control effect was 92.98–100.00 %. The field control effect was 83.21–100.00 %. Transcriptome sequencing analysis revealed 1,472 significantly upregulated genes and 1,995 downregulated genes. The differentially expressed genes were enriched in several pathways related to amino acid biosynthesis and metabolism. The expression levels of actin-7-like, lipoxygenase, linoleic acid 9S-lipoxygenase 6-like, pathogenesis-related protein PR-1-like, superoxide dismutase, phenylalanine ammonia lyase and polyphenol oxidase were significantly increased. The relative enzymic activities induced by B. tequilensis presented maximum differences between 2.63-fold and 3.43-fold. Our results suggest that B. tequilensis combats WPM by inducing systemic acquired resistance in wheat, helps elucidate biological agent targeted control mechanisms and provides a foundation for field application.
期刊介绍:
Biological control is an environmentally sound and effective means of reducing or mitigating pests and pest effects through the use of natural enemies. The aim of Biological Control is to promote this science and technology through publication of original research articles and reviews of research and theory. The journal devotes a section to reports on biotechnologies dealing with the elucidation and use of genes or gene products for the enhancement of biological control agents.
The journal encompasses biological control of viral, microbial, nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural resource, stored product, and urban environments. Biological control of arthropod pests of human and domestic animals is also included. Ecological, molecular, and biotechnological approaches to the understanding of biological control are welcome.