A Pseudomonas-based bio-formulation to control bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae

IF 3.7 2区 农林科学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biological Control Pub Date : 2025-02-01 DOI:10.1016/j.biocontrol.2024.105686
Pavan Kumar , Giandomenico Corrado , Girigowda Manjunatha , Suma Ramegowda , Pradeep Kumar , Boris Basile , Ganadalu Puttaswamy Mutthuraju , Baggana Girish Jasmitha
{"title":"A Pseudomonas-based bio-formulation to control bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae","authors":"Pavan Kumar ,&nbsp;Giandomenico Corrado ,&nbsp;Girigowda Manjunatha ,&nbsp;Suma Ramegowda ,&nbsp;Pradeep Kumar ,&nbsp;Boris Basile ,&nbsp;Ganadalu Puttaswamy Mutthuraju ,&nbsp;Baggana Girish Jasmitha","doi":"10.1016/j.biocontrol.2024.105686","DOIUrl":null,"url":null,"abstract":"<div><div>Plant growth-promoting bacteria (PGPB) have emerged as sustainable tool for managing plant diseases. This study investigates the potential of a <em>Pseudomonas</em>-based biocontrol agent to manage bacterial blight (BB) in pomegranate. This major disease is caused by <em>Xanthomonas axonopodis</em> pv. <em>punicae</em> (Xap) and it is traditionally controlled with antibiotics. Of the 151 bacterial isolates obtained from the pomegranate rhizosphere, three (UHSPS15A, UHSPS33, and UHSPS54) demonstrated the strongest inhibitory effects against Xap <em>in vitro</em>, and their identification as <em>Pseudomonas</em> was confirmed through DNA analysis. Greenhouse trials with Xap-inoculated plants revealed that preventive application of each of the three isolates was more effective than curative, with UHSPS15A providing the highest protection. A talc-based formulation was developed using UHSPS15A. After evaluating its stability and efficacy in greenhouse Xap-inoculated pomegranates plants, open-fields trials indicated that among the three different treatment modes tested, the combined soil and foliar application achieved the highest disease protection and fruit yield, topping the standard antibiotic control. These findings recommend that integrating <em>Pseudomonas</em>-based bio-formulations into disease management strategies could significantly reduce reliance on synthetic chemicals, offering a sustainable alternative for controlling BB in pomegranate.</div></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"201 ","pages":"Article 105686"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Control","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049964424002512","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant growth-promoting bacteria (PGPB) have emerged as sustainable tool for managing plant diseases. This study investigates the potential of a Pseudomonas-based biocontrol agent to manage bacterial blight (BB) in pomegranate. This major disease is caused by Xanthomonas axonopodis pv. punicae (Xap) and it is traditionally controlled with antibiotics. Of the 151 bacterial isolates obtained from the pomegranate rhizosphere, three (UHSPS15A, UHSPS33, and UHSPS54) demonstrated the strongest inhibitory effects against Xap in vitro, and their identification as Pseudomonas was confirmed through DNA analysis. Greenhouse trials with Xap-inoculated plants revealed that preventive application of each of the three isolates was more effective than curative, with UHSPS15A providing the highest protection. A talc-based formulation was developed using UHSPS15A. After evaluating its stability and efficacy in greenhouse Xap-inoculated pomegranates plants, open-fields trials indicated that among the three different treatment modes tested, the combined soil and foliar application achieved the highest disease protection and fruit yield, topping the standard antibiotic control. These findings recommend that integrating Pseudomonas-based bio-formulations into disease management strategies could significantly reduce reliance on synthetic chemicals, offering a sustainable alternative for controlling BB in pomegranate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biological Control
Biological Control 生物-昆虫学
CiteScore
7.40
自引率
7.10%
发文量
220
审稿时长
63 days
期刊介绍: Biological control is an environmentally sound and effective means of reducing or mitigating pests and pest effects through the use of natural enemies. The aim of Biological Control is to promote this science and technology through publication of original research articles and reviews of research and theory. The journal devotes a section to reports on biotechnologies dealing with the elucidation and use of genes or gene products for the enhancement of biological control agents. The journal encompasses biological control of viral, microbial, nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural resource, stored product, and urban environments. Biological control of arthropod pests of human and domestic animals is also included. Ecological, molecular, and biotechnological approaches to the understanding of biological control are welcome.
期刊最新文献
Advancing strain-specific TaqMan assays for Trichoderma asperellum detection in commercial agricultural settings Integrating Puccinia punctiformis, a biological control agent, into Cirsium arvense management in semi-arid organic agriculture Editorial Board Green guardians: The biocontrol potential of Pseudomonas-derived metabolites for sustainable agriculture Do semi-natural habitats enhance overwintering of generalist predators in arable cropping systems? A meta-analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1