A risk-based maintenance planning in process industry using a bi-objective robust optimization model

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-12-16 DOI:10.1016/j.compchemeng.2024.108984
Zohreh Alipour , Mohammadali Saniee Monfared , Sayyed Ehsan Monabbati
{"title":"A risk-based maintenance planning in process industry using a bi-objective robust optimization model","authors":"Zohreh Alipour ,&nbsp;Mohammadali Saniee Monfared ,&nbsp;Sayyed Ehsan Monabbati","doi":"10.1016/j.compchemeng.2024.108984","DOIUrl":null,"url":null,"abstract":"<div><div>We have developed an innovative risk-based maintenance planning methodology using a bi-objective scenario-based robust optimization model. This approach determines robust, optimal maintenance intervals for process industries. Our methodology comprises two main phases: risk assessment and maintenance planning. In the initial phase, we identified critical items using a Bow-tie diagram, which is subsequently mapped into a Bayesian network to estimate the overall risk based on historical data and process knowledge. In the second phase, we developed a bi-objective scenario-based robust optimization model to Pareto-optimize both risk and cost under operational risks. This results in a robust maintenance plan capable of withstanding time, costs, and failure rate uncertainties inherent in process industries with considering decision-makers' attitudes to risk (risk-averse, risk-neutral, or hybrid attitude). The computational results demonstrate the significant impact of considering uncertainty of critical data, and robustness on the selected maintenance plan and system performance.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"194 ","pages":"Article 108984"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424004022","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed an innovative risk-based maintenance planning methodology using a bi-objective scenario-based robust optimization model. This approach determines robust, optimal maintenance intervals for process industries. Our methodology comprises two main phases: risk assessment and maintenance planning. In the initial phase, we identified critical items using a Bow-tie diagram, which is subsequently mapped into a Bayesian network to estimate the overall risk based on historical data and process knowledge. In the second phase, we developed a bi-objective scenario-based robust optimization model to Pareto-optimize both risk and cost under operational risks. This results in a robust maintenance plan capable of withstanding time, costs, and failure rate uncertainties inherent in process industries with considering decision-makers' attitudes to risk (risk-averse, risk-neutral, or hybrid attitude). The computational results demonstrate the significant impact of considering uncertainty of critical data, and robustness on the selected maintenance plan and system performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双目标鲁棒优化模型的过程工业风险维修计划
我们开发了一种创新的基于风险的维护计划方法,使用基于双目标场景的鲁棒优化模型。这种方法为过程工业确定了可靠的、最佳的维护间隔。我们的方法包括两个主要阶段:风险评估和维护计划。在初始阶段,我们使用领结图确定关键项目,随后将其映射到贝叶斯网络中,以根据历史数据和过程知识估计总体风险。在第二阶段,我们开发了一个基于双目标场景的鲁棒优化模型,在操作风险下对风险和成本进行帕累托优化。这就产生了一个健壮的维护计划,能够承受过程工业中固有的时间、成本和故障率不确定性,并考虑到决策者对风险的态度(风险厌恶、风险中立或混合态度)。计算结果表明,考虑关键数据的不确定性和鲁棒性对选择维修计划和系统性能有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
YANNs: Y-wise affine neural networks for exact and efficient representations of piecewise linear functions Unlocking reactive power potential of industrial processes for voltage support through scheduling optimization Superstructure modeling and optimization of dynamic processes applied to high-performance liquid chromatography with recycling Partial least-squares model adaptation by bootstrap resampling PSFCL: A Probabilistic Slow Feature Contrastive Learning approach for incipient fault diagnosis in industrial processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1