Glacial geology of the Hudson Mountains, Amundsen Sea sector, West Antarctica

IF 3.2 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Quaternary Science Reviews Pub Date : 2025-01-03 DOI:10.1016/j.quascirev.2024.109027
Joanne S. Johnson , Keir A. Nichols , Teal R. Riley , Ryan A. Venturelli , Dominic A. Hodgson , Greg Balco , Brenda Hall , James A. Smith , John Woodward
{"title":"Glacial geology of the Hudson Mountains, Amundsen Sea sector, West Antarctica","authors":"Joanne S. Johnson ,&nbsp;Keir A. Nichols ,&nbsp;Teal R. Riley ,&nbsp;Ryan A. Venturelli ,&nbsp;Dominic A. Hodgson ,&nbsp;Greg Balco ,&nbsp;Brenda Hall ,&nbsp;James A. Smith ,&nbsp;John Woodward","doi":"10.1016/j.quascirev.2024.109027","DOIUrl":null,"url":null,"abstract":"<div><div>The Hudson Mountains are situated in the eastern Amundsen Sea sector of the West Antarctic Ice Sheet, adjacent to Pine Island Glacier. They form a volcanic field of 17 stratovolcanoes and parasitic vents, preserved as nunataks. Two former tributaries of Pine Island Glacier (Larter and Lucchitta glaciers) flow through the mountains. Here we present a detailed study of the glacial geology of the area. We describe field observations and measurements of geomorphological features from 15 of the nunataks, meltwater ponds found on the surface of three nunataks and supraglacial features (ice dolines) from two sites near the present grounding line. Together these provide constraints on the past ice sheet extent, flow pathways and thermal regime, and enhance our understanding of the present hydrological regime – all of which are important as context for the observed modern ice sheet behaviour.</div><div>We find evidence suggesting that all nunataks in the Hudson Mountains were covered by ice during the Last Glacial Maximum (defined here as 26.5-19 ka; Clark et al., 2009) and have since deglaciated. Faceted and polished erratic cobbles and boulders of exotic lithologies (syenites, alkali granites, granites, granodiorites, tonalites and gabbros) are numerous and perched on nunatak surfaces. A marked difference between the dominant erratic lithologies on nunataks adjacent to Pine Island Glacier (granite) and Lucchitta Glacier (granodiorite-tonalite) indicates that the ice sheet was transporting clasts from at least two distinct upstream source regions. The similarity in degree of weathering suggests, however, that all the erratics were transported by one phase of (warm-based) glaciation; their presence on or close to the summits of all except one nunatak indicates that the ice sheet during that time was at least 700 m thicker than present. These results are consistent with ice sheet model simulations which suggest that all nunataks in the Hudson Mountains were completely submerged by the Last Glacial Maximum ice sheet.</div></div>","PeriodicalId":20926,"journal":{"name":"Quaternary Science Reviews","volume":"350 ","pages":"Article 109027"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277379124005298","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Hudson Mountains are situated in the eastern Amundsen Sea sector of the West Antarctic Ice Sheet, adjacent to Pine Island Glacier. They form a volcanic field of 17 stratovolcanoes and parasitic vents, preserved as nunataks. Two former tributaries of Pine Island Glacier (Larter and Lucchitta glaciers) flow through the mountains. Here we present a detailed study of the glacial geology of the area. We describe field observations and measurements of geomorphological features from 15 of the nunataks, meltwater ponds found on the surface of three nunataks and supraglacial features (ice dolines) from two sites near the present grounding line. Together these provide constraints on the past ice sheet extent, flow pathways and thermal regime, and enhance our understanding of the present hydrological regime – all of which are important as context for the observed modern ice sheet behaviour.
We find evidence suggesting that all nunataks in the Hudson Mountains were covered by ice during the Last Glacial Maximum (defined here as 26.5-19 ka; Clark et al., 2009) and have since deglaciated. Faceted and polished erratic cobbles and boulders of exotic lithologies (syenites, alkali granites, granites, granodiorites, tonalites and gabbros) are numerous and perched on nunatak surfaces. A marked difference between the dominant erratic lithologies on nunataks adjacent to Pine Island Glacier (granite) and Lucchitta Glacier (granodiorite-tonalite) indicates that the ice sheet was transporting clasts from at least two distinct upstream source regions. The similarity in degree of weathering suggests, however, that all the erratics were transported by one phase of (warm-based) glaciation; their presence on or close to the summits of all except one nunatak indicates that the ice sheet during that time was at least 700 m thicker than present. These results are consistent with ice sheet model simulations which suggest that all nunataks in the Hudson Mountains were completely submerged by the Last Glacial Maximum ice sheet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quaternary Science Reviews
Quaternary Science Reviews 地学-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
388
审稿时长
3 months
期刊介绍: Quaternary Science Reviews caters for all aspects of Quaternary science, and includes, for example, geology, geomorphology, geography, archaeology, soil science, palaeobotany, palaeontology, palaeoclimatology and the full range of applicable dating methods. The dividing line between what constitutes the review paper and one which contains new original data is not easy to establish, so QSR also publishes papers with new data especially if these perform a review function. All the Quaternary sciences are changing rapidly and subject to re-evaluation as the pace of discovery quickens; thus the diverse but comprehensive role of Quaternary Science Reviews keeps readers abreast of the wider issues relating to new developments in the field.
期刊最新文献
Editorial Board Paleoenvironmental impacts on human evolution in China during the Quaternary Speleothem evidence of late glacial and Early Holocene Preboreal and Boreal hydro-climate changes in western Mediterranean (Corchia Cave, Italy) 2000 years of climate, environmental, and societal variability in southeastern Norway from the annually laminated sediments of Lake Sagtjernet Loess-paleosol sedimentological characteristics in northern Iran since the last interglacial and their paleoenvironmental significance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1