Integrating empirical analysis and deep learning for accurate monsoon prediction in Kerala, India

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-12-01 DOI:10.1016/j.acags.2024.100211
Yajnaseni Dash, Ajith Abraham
{"title":"Integrating empirical analysis and deep learning for accurate monsoon prediction in Kerala, India","authors":"Yajnaseni Dash,&nbsp;Ajith Abraham","doi":"10.1016/j.acags.2024.100211","DOIUrl":null,"url":null,"abstract":"<div><div>Kerala, a coastal state in India characterized by its humid tropical monsoon climate, is profoundly influenced by the Western Ghats and the Arabian Sea. Kerala receives significant rainfall during both the southwest monsoon (June to September, JJAS) and the northeast monsoon (October to December, OND) seasons. Given the substantial impact of rainfall on the state's economy and livelihoods, accurate precipitation forecasting is of critical importance. Although Kerala's annual rainfall is approximately 2.5 times higher than the national average, the state frequently experiences water scarcity due to rapid runoff into the Arabian Sea. This study builds upon previous research concerning Kerala's rainfall patterns and introduces a novel approach to improving rainfall predictions. Usage of a hybrid model that integrates Empirical Mode Decomposition (EMD) with Detrended Fluctuation Analysis (DFA) and deep Long Short-Term Memory (LSTM) neural networks, demonstrates enhanced precision in forecasting. Thus, by integrating empirical data analysis with advanced deep learning techniques, this research offers a robust framework for predicting rainfall in Kerala, making a significant contribution to the field of climate informatics and providing practical benefits for the region's economy and environmental management.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100211"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Kerala, a coastal state in India characterized by its humid tropical monsoon climate, is profoundly influenced by the Western Ghats and the Arabian Sea. Kerala receives significant rainfall during both the southwest monsoon (June to September, JJAS) and the northeast monsoon (October to December, OND) seasons. Given the substantial impact of rainfall on the state's economy and livelihoods, accurate precipitation forecasting is of critical importance. Although Kerala's annual rainfall is approximately 2.5 times higher than the national average, the state frequently experiences water scarcity due to rapid runoff into the Arabian Sea. This study builds upon previous research concerning Kerala's rainfall patterns and introduces a novel approach to improving rainfall predictions. Usage of a hybrid model that integrates Empirical Mode Decomposition (EMD) with Detrended Fluctuation Analysis (DFA) and deep Long Short-Term Memory (LSTM) neural networks, demonstrates enhanced precision in forecasting. Thus, by integrating empirical data analysis with advanced deep learning techniques, this research offers a robust framework for predicting rainfall in Kerala, making a significant contribution to the field of climate informatics and providing practical benefits for the region's economy and environmental management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Deformation analysis by an improved similarity transformation Irrigated rice-field mapping in Brazil using phenological stage information and optical and microwave remote sensing Pymaginverse: A python package for global geomagnetic field modeling Automatic variogram inference using pre-trained Convolutional Neural Networks X-ray Micro-CT based characterization of rock cuttings with deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1