Qishen Granule protects against myocardial ischemia by promoting angiogenesis through BMP2-Dll4-Notch1 pathway

IF 4.7 4区 医学 Q1 CHEMISTRY, MEDICINAL Chinese Herbal Medicines Pub Date : 2025-01-01 DOI:10.1016/j.chmed.2023.12.007
Yiqin Hong , Hui Wang , Hanyan Xie , Xinyi Zhong , Xu Chen , Lishuang Yu , Yawen Zhang , Jingmei Zhang , Qiyan Wang , Binghua Tang , Linghui Lu , Dongqing Guo
{"title":"Qishen Granule protects against myocardial ischemia by promoting angiogenesis through BMP2-Dll4-Notch1 pathway","authors":"Yiqin Hong ,&nbsp;Hui Wang ,&nbsp;Hanyan Xie ,&nbsp;Xinyi Zhong ,&nbsp;Xu Chen ,&nbsp;Lishuang Yu ,&nbsp;Yawen Zhang ,&nbsp;Jingmei Zhang ,&nbsp;Qiyan Wang ,&nbsp;Binghua Tang ,&nbsp;Linghui Lu ,&nbsp;Dongqing Guo","doi":"10.1016/j.chmed.2023.12.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Therapeutic angiogenesis has become a promising approach for treating ischemic heart disease (IHD). The present study aims to investigate the effects of Qishen Granule (QSG) on angiogenesis in myocardial ischemia (MI) and the potential mechanism.</div></div><div><h3>Methods</h3><div><em>In vivo</em> study was conducted on rat model of myocardial infarction. QSG was performed daily at a dose of 2.352 g/kg for four weeks. Cardiac function was assessed by echocardiogram and pro-angiogenic effects were evaluated by Laser Doppler and CD31 expression. Oxygen-glucose deprivation (OGD) was applied in cultured human umbilical vein endothelial cells (HUVECs). Cell viability, wound healing and tube formation assay were used to test functions of HUVECs. ELISA and Western blots were used to assess protein expressions of bone morphogenetic protein 2-delta-like 4-notch homolog 1 (BMP2-Dll4-Notch1) signaling pathway.</div></div><div><h3>Results</h3><div>The results showed that QSG improved heart function, cardiac blood flow and microvessel density in myocardial ischemic rats. <em>In vitro,</em> QSG protected HUVECs by promoting the cell viability and tube formation. QSG upregulated bone morphogenetic protein-2 (BMP2) and downregulated delta-like 4 (Dll4) and notch homolog 1 (Notch1) expressions both in rats and HUVECs.</div></div><div><h3>Conclusion</h3><div>QSG protected against MI by promoting angiogenesis through BMP2-Dll4-Notch1 pathway. BMP2 might be a promising therapeutic target for IHD.</div></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"17 1","pages":"Pages 139-147"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Herbal Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674638424000364","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Therapeutic angiogenesis has become a promising approach for treating ischemic heart disease (IHD). The present study aims to investigate the effects of Qishen Granule (QSG) on angiogenesis in myocardial ischemia (MI) and the potential mechanism.

Methods

In vivo study was conducted on rat model of myocardial infarction. QSG was performed daily at a dose of 2.352 g/kg for four weeks. Cardiac function was assessed by echocardiogram and pro-angiogenic effects were evaluated by Laser Doppler and CD31 expression. Oxygen-glucose deprivation (OGD) was applied in cultured human umbilical vein endothelial cells (HUVECs). Cell viability, wound healing and tube formation assay were used to test functions of HUVECs. ELISA and Western blots were used to assess protein expressions of bone morphogenetic protein 2-delta-like 4-notch homolog 1 (BMP2-Dll4-Notch1) signaling pathway.

Results

The results showed that QSG improved heart function, cardiac blood flow and microvessel density in myocardial ischemic rats. In vitro, QSG protected HUVECs by promoting the cell viability and tube formation. QSG upregulated bone morphogenetic protein-2 (BMP2) and downregulated delta-like 4 (Dll4) and notch homolog 1 (Notch1) expressions both in rats and HUVECs.

Conclusion

QSG protected against MI by promoting angiogenesis through BMP2-Dll4-Notch1 pathway. BMP2 might be a promising therapeutic target for IHD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Herbal Medicines
Chinese Herbal Medicines CHEMISTRY, MEDICINAL-
CiteScore
4.40
自引率
5.30%
发文量
629
审稿时长
10 weeks
期刊介绍: Chinese Herbal Medicines is intended to disseminate the latest developments and research progress in traditional and herbal medical sciences to researchers, practitioners, academics and administrators worldwide in the field of traditional and herbal medicines. The journal's international coverage ensures that research and progress from all regions of the world are widely included. CHM is a core journal of Chinese science and technology. The journal entered into the ESCI database in 2017, and then was included in PMC, Scopus and other important international search systems. In 2019, CHM was successfully selected for the “China Science and Technology Journal Excellence Action Plan” project, which has markedly improved its international influence and industry popularity. CHM obtained the first impact factor of 3.8 in Journal Citation Reports (JCR) in 2023.
期刊最新文献
Flavones in pomelo peel resist fibril formation of human islet amyloid polypeptide Sini decoction alleviates inflammation injury after myocardial infarction through regulating arachidonic acid metabolism Material basis revelation of anti-hepatoma effect of Huachansu (Cinobufacini) through down-regulation of thymidylate synthase TPMGD: A genomic database for the traditional medicines in Pakistan Paris saponin VII induces Caspase-3/GSDME-dependent pyroptosis in pancreatic ductal adenocarcinoma cells by activating ROS/Bax signaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1