{"title":"Hoffman colorings of graphs","authors":"Aida Abiad , Wieb Bosma , Thijs van Veluw","doi":"10.1016/j.laa.2025.01.036","DOIUrl":null,"url":null,"abstract":"<div><div>Hoffman's bound is a well-known spectral bound on the chromatic number of a graph, known to be tight for instance for bipartite graphs. While Hoffman colorings (colorings attaining the bound) were studied before for regular graphs, for general graphs not much is known. We investigate tightness of the Hoffman bound, with a particular focus on irregular graphs, obtaining several results on the graph structure of Hoffman colorings. In particular, we prove a Decomposition Theorem, which characterizes the structure of Hoffman colorings, and we use it to completely classify Hoffman colorability of cone graphs and line graphs. We also prove a partial converse, the Composition Theorem, leading to an algorithm for computing all connected Hoffman colorable graphs for some given number of vertices and colors. Since several graph coloring parameters are known to be sandwiched between the Hoffman bound and the chromatic number, as a byproduct of our results, we obtain the values of these chromatic parameters.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 129-150"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000424","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hoffman's bound is a well-known spectral bound on the chromatic number of a graph, known to be tight for instance for bipartite graphs. While Hoffman colorings (colorings attaining the bound) were studied before for regular graphs, for general graphs not much is known. We investigate tightness of the Hoffman bound, with a particular focus on irregular graphs, obtaining several results on the graph structure of Hoffman colorings. In particular, we prove a Decomposition Theorem, which characterizes the structure of Hoffman colorings, and we use it to completely classify Hoffman colorability of cone graphs and line graphs. We also prove a partial converse, the Composition Theorem, leading to an algorithm for computing all connected Hoffman colorable graphs for some given number of vertices and colors. Since several graph coloring parameters are known to be sandwiched between the Hoffman bound and the chromatic number, as a byproduct of our results, we obtain the values of these chromatic parameters.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.