An improved machining temperature prediction model for aerospace alloys: Effect of cutting edge radius and tool wear

IF 6.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Journal of Manufacturing Processes Pub Date : 2025-01-17 DOI:10.1016/j.jmapro.2024.11.092
Jonathan Theraroz , Oguzhan Tuysuz , Julius Schoop
{"title":"An improved machining temperature prediction model for aerospace alloys: Effect of cutting edge radius and tool wear","authors":"Jonathan Theraroz ,&nbsp;Oguzhan Tuysuz ,&nbsp;Julius Schoop","doi":"10.1016/j.jmapro.2024.11.092","DOIUrl":null,"url":null,"abstract":"<div><div>Temperature rise during machining impacts the workpiece material properties, residual stresses, surface and sub-surface quality. Experimental, numerical, and analytical methods have been used to predict the temperature fields in the tool, workpiece and chip. Each approach has its limitations: experimental techniques are cumbersome with expensive equipment, and numerical modeling is computationally inefficient. Existing analytical models only consider the effect of wear while ignoring the edge radius, though the latter changes with the flank wear in practice. To address this limitation, this article proposes an improved analytical temperature prediction model for orthogonal machining by introducing discrete linear heat sources on the edge radius of the cutting edge. The model describes the machining deformation zones by moving or stationary heat sources and models the adiabatic surfaces by imaginary heat sources. The heat partition is calculated to describe the amount of temperature transferred from a heat source to a given body. A global coordinate system is introduced to facilitate the integration of the edge radius in the temperature model, and variation in the direction of the heat source velocity. Temperature predictions of the developed model were experimentally verified using an inverse method based on XRD residual stress measurements. The results of the analysis show that the proposed model is reasonably accurate and most importantly computationally efficient alternative to tedious experimental measurements or more complicated finite element approaches.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"133 ","pages":"Pages 1100-1110"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524012647","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature rise during machining impacts the workpiece material properties, residual stresses, surface and sub-surface quality. Experimental, numerical, and analytical methods have been used to predict the temperature fields in the tool, workpiece and chip. Each approach has its limitations: experimental techniques are cumbersome with expensive equipment, and numerical modeling is computationally inefficient. Existing analytical models only consider the effect of wear while ignoring the edge radius, though the latter changes with the flank wear in practice. To address this limitation, this article proposes an improved analytical temperature prediction model for orthogonal machining by introducing discrete linear heat sources on the edge radius of the cutting edge. The model describes the machining deformation zones by moving or stationary heat sources and models the adiabatic surfaces by imaginary heat sources. The heat partition is calculated to describe the amount of temperature transferred from a heat source to a given body. A global coordinate system is introduced to facilitate the integration of the edge radius in the temperature model, and variation in the direction of the heat source velocity. Temperature predictions of the developed model were experimentally verified using an inverse method based on XRD residual stress measurements. The results of the analysis show that the proposed model is reasonably accurate and most importantly computationally efficient alternative to tedious experimental measurements or more complicated finite element approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Manufacturing Processes
Journal of Manufacturing Processes ENGINEERING, MANUFACTURING-
CiteScore
10.20
自引率
11.30%
发文量
833
审稿时长
50 days
期刊介绍: The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.
期刊最新文献
Editorial Board Microscale investigation of molten pool flow and microstructure evolution of Inconel718 alloy during solid-liquid transition Shallow-angled jet impingement generated channel geometry prediction in milling Ti-6Al-4V alloy Magnetic field assisted micro-milling of selective laser melted titanium alloy Grinding performance and parameter optimization of laser DED TiC reinforced Ni-based composite coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1