{"title":"Generative AI in the context of assistive technologies: Trends, limitations and future directions","authors":"Biying Fu , Abdenour Hadid , Naser Damer","doi":"10.1016/j.imavis.2024.105347","DOIUrl":null,"url":null,"abstract":"<div><div>With the tremendous successes of Large Language Models (LLMs) like ChatGPT for text generation and Dall-E for high-quality image generation, generative Artificial Intelligence (AI) models have shown a hype in our society. Generative AI seamlessly delved into different aspects of society ranging from economy, education, legislation, computer science, finance, and even healthcare. This article provides a comprehensive survey on the increased and promising use of generative AI in assistive technologies benefiting different parties, ranging from the assistive system developers, medical practitioners, care workforce, to the people who need the care and the comfort. Ethical concerns, biases, lack of transparency, insufficient explainability, and limited trustworthiness are major challenges when using generative AI in assistive technologies, particularly in systems that impact people directly. Key future research directions to address these issues include creating standardized rules, establishing commonly accepted evaluation metrics and benchmarks for explainability and reasoning processes, and making further advancements in understanding and reducing bias and its potential harms. Beyond showing the current trends of applying generative AI in the scope of assistive technologies in four identified key domains, which include care sectors, medical sectors, helping people in need, and co-working, the survey also discusses the current limitations and provides promising future research directions to foster better integration of generative AI in assistive technologies.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"154 ","pages":"Article 105347"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885624004529","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the tremendous successes of Large Language Models (LLMs) like ChatGPT for text generation and Dall-E for high-quality image generation, generative Artificial Intelligence (AI) models have shown a hype in our society. Generative AI seamlessly delved into different aspects of society ranging from economy, education, legislation, computer science, finance, and even healthcare. This article provides a comprehensive survey on the increased and promising use of generative AI in assistive technologies benefiting different parties, ranging from the assistive system developers, medical practitioners, care workforce, to the people who need the care and the comfort. Ethical concerns, biases, lack of transparency, insufficient explainability, and limited trustworthiness are major challenges when using generative AI in assistive technologies, particularly in systems that impact people directly. Key future research directions to address these issues include creating standardized rules, establishing commonly accepted evaluation metrics and benchmarks for explainability and reasoning processes, and making further advancements in understanding and reducing bias and its potential harms. Beyond showing the current trends of applying generative AI in the scope of assistive technologies in four identified key domains, which include care sectors, medical sectors, helping people in need, and co-working, the survey also discusses the current limitations and provides promising future research directions to foster better integration of generative AI in assistive technologies.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.