Crystal Structure, spectroscopic investigations (FT-IR, UV/Vis), and DFT/QTAIM/NCI Computations of a novel (η2-hydrogencarbonato) Six-coordinate high-spin Iron(II) picket fence porphyrin complex

IF 2.7 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Inorganica Chimica Acta Pub Date : 2024-12-21 DOI:10.1016/j.ica.2024.122507
Mondher Dhifet , Bouzid Gassoumi , Jean-Claude Daran , Noureddine Issaoui , Habib Nasri
{"title":"Crystal Structure, spectroscopic investigations (FT-IR, UV/Vis), and DFT/QTAIM/NCI Computations of a novel (η2-hydrogencarbonato) Six-coordinate high-spin Iron(II) picket fence porphyrin complex","authors":"Mondher Dhifet ,&nbsp;Bouzid Gassoumi ,&nbsp;Jean-Claude Daran ,&nbsp;Noureddine Issaoui ,&nbsp;Habib Nasri","doi":"10.1016/j.ica.2024.122507","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we have prepared the novel (η<sup>2</sup>-hydrogencarbonato) high-spin (S = 2) iron(II) picket fence porphyrin ([Fe<sup>II</sup>(TpivPP)(η<sup>2</sup>-HCO<sub>3</sub>)]<sup>−</sup> ion complex (complex <strong>I</strong>) which was characterized by UV/Vis and IR spectroscopy and single crystal X-ray diffraction molecular structure. These techniques show that the HCO<sub>3</sub><sup>−</sup> axial ligand is coordinated to the Fe<sup>2+</sup> metal ion in a bidentate mode and that complex <strong>I</strong> is high-spin (S = 2). Density functional theory (DFT) calculations were performed on complex <strong>I</strong> using the DFT/B3LYP/LanL2DZ level of theory to study the HOMO-LUMO shapes and energy, Molecular Electrostatic Potential (MEP) as well as several other global chemical reactivity descriptors in order to evaluate the reactivity of our ferrous η<sup>2</sup>-hydrogencarbonato porphyrin coordination complex. Furthermore, Quantum Theory of Atoms in Molecules (QTAIM) and Non-Covalent Interaction (NCI) analyses have been performed to study the non-covalent interactions in the crystal lattice of complex <strong>I</strong>.</div></div>","PeriodicalId":13599,"journal":{"name":"Inorganica Chimica Acta","volume":"577 ","pages":"Article 122507"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002016932400598X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we have prepared the novel (η2-hydrogencarbonato) high-spin (S = 2) iron(II) picket fence porphyrin ([FeII(TpivPP)(η2-HCO3)] ion complex (complex I) which was characterized by UV/Vis and IR spectroscopy and single crystal X-ray diffraction molecular structure. These techniques show that the HCO3 axial ligand is coordinated to the Fe2+ metal ion in a bidentate mode and that complex I is high-spin (S = 2). Density functional theory (DFT) calculations were performed on complex I using the DFT/B3LYP/LanL2DZ level of theory to study the HOMO-LUMO shapes and energy, Molecular Electrostatic Potential (MEP) as well as several other global chemical reactivity descriptors in order to evaluate the reactivity of our ferrous η2-hydrogencarbonato porphyrin coordination complex. Furthermore, Quantum Theory of Atoms in Molecules (QTAIM) and Non-Covalent Interaction (NCI) analyses have been performed to study the non-covalent interactions in the crystal lattice of complex I.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganica Chimica Acta
Inorganica Chimica Acta 化学-无机化学与核化学
CiteScore
6.00
自引率
3.60%
发文量
440
审稿时长
35 days
期刊介绍: Inorganica Chimica Acta is an established international forum for all aspects of advanced Inorganic Chemistry. Original papers of high scientific level and interest are published in the form of Articles and Reviews. Topics covered include: • chemistry of the main group elements and the d- and f-block metals, including the synthesis, characterization and reactivity of coordination, organometallic, biomimetic, supramolecular coordination compounds, including associated computational studies; • synthesis, physico-chemical properties, applications of molecule-based nano-scaled clusters and nanomaterials designed using the principles of coordination chemistry, as well as coordination polymers (CPs), metal-organic frameworks (MOFs), metal-organic polyhedra (MPOs); • reaction mechanisms and physico-chemical investigations computational studies of metalloenzymes and their models; • applications of inorganic compounds, metallodrugs and molecule-based materials. Papers composed primarily of structural reports will typically not be considered for publication.
期刊最新文献
Editorial Board Contents continued Graphical abstract TOC Graphical abstract TOC Synthesis, structural characterization and DFT study of a cobalt(III)/cobalt(II) complex derived from N,O donor reduced Schiff base ligand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1