Rajat Kumar Arya, Siddhant Jain, Pratik Chattopadhyay, Rajeev Srivastava
{"title":"HSIRMamba: An effective feature learning for hyperspectral image classification using residual Mamba","authors":"Rajat Kumar Arya, Siddhant Jain, Pratik Chattopadhyay, Rajeev Srivastava","doi":"10.1016/j.imavis.2024.105387","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning models have recently demonstrated outstanding results in classifying hyperspectral images (HSI). The Transformer model is among the various deep learning models that have received increasing interest due to its superior ability to simulate the long-term dependence of spatial-spectral information in HSI. Due to its self-attention mechanism, the Transformer exhibits quadratic computational complexity, which makes it heavier than other models and limits its application in the processing of HSI. Fortunately, the newly developed state space model Mamba exhibits excellent computing effectiveness and achieves Transformer-like modeling capabilities. Therefore, we propose a novel enhanced Mamba-based model called HSIRMamba that integrates residual operations into the Mamba architecture by combining the power of Mamba and the residual network to extract the spectral properties of HSI more effectively. It also includes a concurrent dedicated block for spatial analysis using a convolutional neural network. HSIRMamba extracts more accurate features with low computational power, making it more powerful than transformer-based models. HSIRMamba was tested on three majorly used HSI Datasets-Indian Pines, Pavia University, and Houston 2013. The experimental results demonstrate that the proposed method achieves competitive results compared to state-of-the-art methods.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"154 ","pages":"Article 105387"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026288562400492X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning models have recently demonstrated outstanding results in classifying hyperspectral images (HSI). The Transformer model is among the various deep learning models that have received increasing interest due to its superior ability to simulate the long-term dependence of spatial-spectral information in HSI. Due to its self-attention mechanism, the Transformer exhibits quadratic computational complexity, which makes it heavier than other models and limits its application in the processing of HSI. Fortunately, the newly developed state space model Mamba exhibits excellent computing effectiveness and achieves Transformer-like modeling capabilities. Therefore, we propose a novel enhanced Mamba-based model called HSIRMamba that integrates residual operations into the Mamba architecture by combining the power of Mamba and the residual network to extract the spectral properties of HSI more effectively. It also includes a concurrent dedicated block for spatial analysis using a convolutional neural network. HSIRMamba extracts more accurate features with low computational power, making it more powerful than transformer-based models. HSIRMamba was tested on three majorly used HSI Datasets-Indian Pines, Pavia University, and Houston 2013. The experimental results demonstrate that the proposed method achieves competitive results compared to state-of-the-art methods.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.