Reduced magnitude of Early Pleistocene intensification of Northern Hemisphere Glaciation

IF 3.2 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Quaternary Science Reviews Pub Date : 2025-02-01 DOI:10.1016/j.quascirev.2024.109096
G.R. Grant , T.R. Naish , B.A. Keisling , M.O. Patterson , P.J.J. Kamp , S.R. Meyers , D.P. Strogen , P. Stocchi , R.M. McKay
{"title":"Reduced magnitude of Early Pleistocene intensification of Northern Hemisphere Glaciation","authors":"G.R. Grant ,&nbsp;T.R. Naish ,&nbsp;B.A. Keisling ,&nbsp;M.O. Patterson ,&nbsp;P.J.J. Kamp ,&nbsp;S.R. Meyers ,&nbsp;D.P. Strogen ,&nbsp;P. Stocchi ,&nbsp;R.M. McKay","doi":"10.1016/j.quascirev.2024.109096","DOIUrl":null,"url":null,"abstract":"<div><div>Increased magnitude and expanding geographic distribution of ice-berg rafted debris in deep ocean sediment cores and increasing amplitude of variability in the benthic oxygen isotope (δ<sup>18</sup>O) proxy-global ice volume from ∼2.7 Ma marks the intensification of the Northern Hemisphere glaciation (iNHG). However, the location, extent and volume of Northern Hemisphere Ice Sheets (NHISs) is poorly constrained by proximal geologic evidence, and global sea-level records cannot determine individual polar ice sheet contributions alone.</div><div>Quantitative relationships between sediment transport, water depth and grain size on a wave-graded continental shelf were previously applied to Pliocene shallow-marine sedimentary deposits in Whanganui Basin, New Zealand to provide an independent relative sea level record (<em>PlioSeaNZ;</em> 3.3–2.5 Ma). Here, we extend the duration of the sea-level record from 3.3 to 1.7 Ma (<em>X</em>-<em>PlioSeaNZ</em>) using a well-documented, shallow-marine sedimentary succession, that outcrops in the Rangitikei River Valley of the Whanganui Basin.</div><div>The resulting glacial-interglacial, relative sea-level fluctuations are up to 45 ± 12.5 m paced by 41 kyr-obliquity frequency during the Early Pleistocene, but also contain modulation of 100 kyr-eccentricity cycle. These maximum sea-level amplitudes are more comparable to the mean of those previously reconstructed from calibrated benthic δ<sup>18</sup>O (e.g. Miller et al., 2020), and are significantly lower than estimates provided by albeit limited geological evidence proximal to the NHIS (Batchelor et al., 2019). Here we suggest that while NHISs acquired continental extent by 2.6 Ma, their collective volume may be overestimated in benthic δ<sup>18</sup>O calibrations and area-volume reconstructions, by as much as 50%.</div><div>We propose that a reduced aspect ratio of ice sheets during iNHG was driven by 41-kyr changes in integrated summer insolation and enhanced by a subglacial regolith feedback reducing resistance to basal sliding. Regardless, the lower ice volume through the iNHG implies a lower ice sheet sensitivity (ice equivalent sea-level per degree Celsius change in temperature) under higher atmospheric CO<sub>2</sub> of 4–6 m/°C compared to ∼20 m/°C for the period since the Last Glacial Maximum. This ice sheet sensitivity still has significant implications for society and sea-level will continue to rise under current emissions.</div></div>","PeriodicalId":20926,"journal":{"name":"Quaternary Science Reviews","volume":"349 ","pages":"Article 109096"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277379124005985","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Increased magnitude and expanding geographic distribution of ice-berg rafted debris in deep ocean sediment cores and increasing amplitude of variability in the benthic oxygen isotope (δ18O) proxy-global ice volume from ∼2.7 Ma marks the intensification of the Northern Hemisphere glaciation (iNHG). However, the location, extent and volume of Northern Hemisphere Ice Sheets (NHISs) is poorly constrained by proximal geologic evidence, and global sea-level records cannot determine individual polar ice sheet contributions alone.
Quantitative relationships between sediment transport, water depth and grain size on a wave-graded continental shelf were previously applied to Pliocene shallow-marine sedimentary deposits in Whanganui Basin, New Zealand to provide an independent relative sea level record (PlioSeaNZ; 3.3–2.5 Ma). Here, we extend the duration of the sea-level record from 3.3 to 1.7 Ma (X-PlioSeaNZ) using a well-documented, shallow-marine sedimentary succession, that outcrops in the Rangitikei River Valley of the Whanganui Basin.
The resulting glacial-interglacial, relative sea-level fluctuations are up to 45 ± 12.5 m paced by 41 kyr-obliquity frequency during the Early Pleistocene, but also contain modulation of 100 kyr-eccentricity cycle. These maximum sea-level amplitudes are more comparable to the mean of those previously reconstructed from calibrated benthic δ18O (e.g. Miller et al., 2020), and are significantly lower than estimates provided by albeit limited geological evidence proximal to the NHIS (Batchelor et al., 2019). Here we suggest that while NHISs acquired continental extent by 2.6 Ma, their collective volume may be overestimated in benthic δ18O calibrations and area-volume reconstructions, by as much as 50%.
We propose that a reduced aspect ratio of ice sheets during iNHG was driven by 41-kyr changes in integrated summer insolation and enhanced by a subglacial regolith feedback reducing resistance to basal sliding. Regardless, the lower ice volume through the iNHG implies a lower ice sheet sensitivity (ice equivalent sea-level per degree Celsius change in temperature) under higher atmospheric CO2 of 4–6 m/°C compared to ∼20 m/°C for the period since the Last Glacial Maximum. This ice sheet sensitivity still has significant implications for society and sea-level will continue to rise under current emissions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quaternary Science Reviews
Quaternary Science Reviews 地学-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
388
审稿时长
3 months
期刊介绍: Quaternary Science Reviews caters for all aspects of Quaternary science, and includes, for example, geology, geomorphology, geography, archaeology, soil science, palaeobotany, palaeontology, palaeoclimatology and the full range of applicable dating methods. The dividing line between what constitutes the review paper and one which contains new original data is not easy to establish, so QSR also publishes papers with new data especially if these perform a review function. All the Quaternary sciences are changing rapidly and subject to re-evaluation as the pace of discovery quickens; thus the diverse but comprehensive role of Quaternary Science Reviews keeps readers abreast of the wider issues relating to new developments in the field.
期刊最新文献
Environmental magnetism of late Holocene stalagmites from semi-arid karst in southern Australia A watery ice sheet demise: Formation and drainage of ice-dammed lakes in Southern Norway during the Early Holocene The importance of tropical tree-ring chronologies for global change research Ecological response of a high-elevation peatland to late Holocene hydroclimate change on the southeastern Tibetan Plateau Nonlinear diatom responses to millennial-scale climate-mediated terrestrial-aquatic interactions in a treeline lake on the Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1