{"title":"The JCSS probabilistic model Code, future developments","authors":"R.D.J.M. Steenbergen , A.C.W.M. Vrouwenvelder","doi":"10.1016/j.strusafe.2024.102540","DOIUrl":null,"url":null,"abstract":"<div><div>To assess and verify the reliability of structures, reliability based building codes allow for the application of full-probabilistic methods and semi-probabilistic methods (i.e. the partial factor method). In principle, both methods should be equivalent and lead to (approximately) the same reliability level. Therefore partial factors should be as much as possible determined based on a probabilistic background and calibration exercises. On the other hand, as the probabilistic design method may be considered as more rational and consistent than the partial factor design, there is a tendency to use probabilistic methods directly in the assessment of special of important new structures and also in the assessment of existing structures. In both the calibration exercise and in the full probabilistic assessment of structures, we face the problem that many assumptions have to be made. In particular in regard to the statistical modelling of random variables and in regard to accepted approximative methods of calculation. This often brings the engineer to a challenging position. In the past years the JCSS probabilistic model code (PMC) has served as an often-consulted operational code for this purpose. In the present paper, the JCSS PMC and its future developments are presented and discussed.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"113 ","pages":"Article 102540"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473024001115","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
To assess and verify the reliability of structures, reliability based building codes allow for the application of full-probabilistic methods and semi-probabilistic methods (i.e. the partial factor method). In principle, both methods should be equivalent and lead to (approximately) the same reliability level. Therefore partial factors should be as much as possible determined based on a probabilistic background and calibration exercises. On the other hand, as the probabilistic design method may be considered as more rational and consistent than the partial factor design, there is a tendency to use probabilistic methods directly in the assessment of special of important new structures and also in the assessment of existing structures. In both the calibration exercise and in the full probabilistic assessment of structures, we face the problem that many assumptions have to be made. In particular in regard to the statistical modelling of random variables and in regard to accepted approximative methods of calculation. This often brings the engineer to a challenging position. In the past years the JCSS probabilistic model code (PMC) has served as an often-consulted operational code for this purpose. In the present paper, the JCSS PMC and its future developments are presented and discussed.
期刊介绍:
Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment