Impact of a machine learning–based prediction model on annual surveillance endoscopy costs for detecting gastric cancer

iGIE Pub Date : 2024-12-01 DOI:10.1016/j.igie.2024.09.003
Junya Arai MD, PhD , Atsushi Miyawaki MD, PhD , Yoku Hayakawa MD, PhD , Tomonori Aoki MD, PhD , Ryota Niikura MD, PhD , Hiroaki Fujiwara MD, PhD , Tetsuo Ushiku MD, PhD , Masato Kasuga MD, PhD , Mitsuhiro Fujishiro MD, PhD
{"title":"Impact of a machine learning–based prediction model on annual surveillance endoscopy costs for detecting gastric cancer","authors":"Junya Arai MD, PhD ,&nbsp;Atsushi Miyawaki MD, PhD ,&nbsp;Yoku Hayakawa MD, PhD ,&nbsp;Tomonori Aoki MD, PhD ,&nbsp;Ryota Niikura MD, PhD ,&nbsp;Hiroaki Fujiwara MD, PhD ,&nbsp;Tetsuo Ushiku MD, PhD ,&nbsp;Masato Kasuga MD, PhD ,&nbsp;Mitsuhiro Fujishiro MD, PhD","doi":"10.1016/j.igie.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Aims</h3><div>In this study, we assessed our machine learning (ML)-based model's impact on reducing annual surveillance endoscopy costs for detecting gastric cancer (GC).</div></div><div><h3>Methods</h3><div>We analyzed 1099 patients with chronic gastritis undergoing annual EGD and randomly divided them into training and test sets (4:1). Using gradient-boosting decision trees and incorporating patient characteristics, we developed the ML model. In the test sets, we compared the EGD number needed to screen (NNS) for 1 GC, cost, and GC detection rate across different risk stratification strategies.</div></div><div><h3>Results</h3><div>The ML-selected high-risk cohort demonstrated low NNS values, low total cost, low cost per 1 GC, and high GC detection rates compared with alternative risk stratification approaches, including operative link for gastric atrophy assessment and operative link for gastric intestinal metaplasia assessment.</div></div><div><h3>Conclusions</h3><div>Our ML model holds promise in reducing endoscopy surveillance costs while maintaining a robust GC detection rate.</div></div>","PeriodicalId":100652,"journal":{"name":"iGIE","volume":"3 4","pages":"Pages 463-467"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iGIE","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949708624001183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Aims

In this study, we assessed our machine learning (ML)-based model's impact on reducing annual surveillance endoscopy costs for detecting gastric cancer (GC).

Methods

We analyzed 1099 patients with chronic gastritis undergoing annual EGD and randomly divided them into training and test sets (4:1). Using gradient-boosting decision trees and incorporating patient characteristics, we developed the ML model. In the test sets, we compared the EGD number needed to screen (NNS) for 1 GC, cost, and GC detection rate across different risk stratification strategies.

Results

The ML-selected high-risk cohort demonstrated low NNS values, low total cost, low cost per 1 GC, and high GC detection rates compared with alternative risk stratification approaches, including operative link for gastric atrophy assessment and operative link for gastric intestinal metaplasia assessment.

Conclusions

Our ML model holds promise in reducing endoscopy surveillance costs while maintaining a robust GC detection rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preliminary validation of the virtual bariatric endoscopic simulator Unexpected clipping failure of a full-thickness resection device during endoscopic full-thickness resection Transgastric biliary drainage through a biliodigestive efferent loop using a lumen-apposing metal stent Clinical safety of a novel over-the-scope gastroduodenal full-thickness resection device for the treatment of upper GI tract lesions: a multicenter experience Novel hemostatic adhesive powder to prevent delayed bleeding after endoscopic submucosal dissection in the GI tract: first U.S. multicenter experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1