Synthetic dataset generation system for vehicle detection

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-12-28 DOI:10.1016/j.simpa.2024.100735
Mihaela Orić , Vlatko Galić , Filip Novoselnik
{"title":"Synthetic dataset generation system for vehicle detection","authors":"Mihaela Orić ,&nbsp;Vlatko Galić ,&nbsp;Filip Novoselnik","doi":"10.1016/j.simpa.2024.100735","DOIUrl":null,"url":null,"abstract":"<div><div>The success of machine learning models for object detection highly depends on the training data size and quality. Generating synthetic data speeds up the data acquisition process by removing the need for human annotation. Moreover, since annotation is done automatically, there is no room for human error. We present a pipeline that automatically generates and annotates aerial images of vehicles on roads. The pipeline is structured to allow easy adding of various new vehicles and is not limited to cars only. The resolution of the generated images and the level of detail can be modified by changing the output settings.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100735"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824001234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The success of machine learning models for object detection highly depends on the training data size and quality. Generating synthetic data speeds up the data acquisition process by removing the need for human annotation. Moreover, since annotation is done automatically, there is no room for human error. We present a pipeline that automatically generates and annotates aerial images of vehicles on roads. The pipeline is structured to allow easy adding of various new vehicles and is not limited to cars only. The resolution of the generated images and the level of detail can be modified by changing the output settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
KNNOR-Reg: A python package for oversampling in imbalanced regression pff-oc: A space–time phase-field fracture optimal control framework Synthetic dataset generation system for vehicle detection Multi-browser VE: Enhancing internet browsing experience through virtual reality DeepPack3D: A Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1