Multi-port network based modeling and selection of capacitor for desired voltage regulation of a standalone six-phase short-shunt induction generator for application in remote areas

Saikat Ghosh, S.N. Mahato
{"title":"Multi-port network based modeling and selection of capacitor for desired voltage regulation of a standalone six-phase short-shunt induction generator for application in remote areas","authors":"Saikat Ghosh,&nbsp;S.N. Mahato","doi":"10.1016/j.prime.2024.100859","DOIUrl":null,"url":null,"abstract":"<div><div>This paper gives a straightforward method to determine the values of excitation capacitors of a standalone short-shunt six-phase induction generator (SPIG) to maintain the voltage profile within predetermined percentage of voltage deviation (VD). In this envisioned study, the value of the capacitor is meticulously chosen to optimize the number of capacitor switching, ensuring minimal system cost and complexity. The theory of multi-port network analysis has been applied for modelling of the SPIG, thus, the complex mathematical derivation to obtain the model equations is avoided. The system is expressed as a multivariable nonlinear optimization problem. The resultant admittance of the SPIG is calculated from its per phase equivalent circuit and is used as an objective function, which is solved using Binary Search Algorithm (BSA). The main novelty of this work is the determination of the model equations of the SPIG system in an efficient and simple way using the multi-port network analysis approach. Along with this, the BSA is employed for optimal selection of excitation capacitors because of its simplicity and less computational time. The results, on a 3.7 kW induction machine, reveal that to maintain a 4 % VD, a fixed series capacitor of 140 µF and two switched shunt capacitors (34.4 µF, 91.8 µF) are required. For 2 % VD, four shunt capacitors (24.2µF, 36.2µF, 64.7µF, 91.2µF) are necessary. The performance of the machine is evaluated with the help of magnetic characteristics and other equations obtained from its per phase equivalent circuit. The experimentation has been carried out in a hardware prototype system developed in the laboratory. The experimental and the simulated results are compared and found that both are nearly same for different operating conditions, which indicates the efficacy of the proposed approach.</div></div>","PeriodicalId":100488,"journal":{"name":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","volume":"10 ","pages":"Article 100859"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Prime - Advances in Electrical Engineering, Electronics and Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772671124004388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper gives a straightforward method to determine the values of excitation capacitors of a standalone short-shunt six-phase induction generator (SPIG) to maintain the voltage profile within predetermined percentage of voltage deviation (VD). In this envisioned study, the value of the capacitor is meticulously chosen to optimize the number of capacitor switching, ensuring minimal system cost and complexity. The theory of multi-port network analysis has been applied for modelling of the SPIG, thus, the complex mathematical derivation to obtain the model equations is avoided. The system is expressed as a multivariable nonlinear optimization problem. The resultant admittance of the SPIG is calculated from its per phase equivalent circuit and is used as an objective function, which is solved using Binary Search Algorithm (BSA). The main novelty of this work is the determination of the model equations of the SPIG system in an efficient and simple way using the multi-port network analysis approach. Along with this, the BSA is employed for optimal selection of excitation capacitors because of its simplicity and less computational time. The results, on a 3.7 kW induction machine, reveal that to maintain a 4 % VD, a fixed series capacitor of 140 µF and two switched shunt capacitors (34.4 µF, 91.8 µF) are required. For 2 % VD, four shunt capacitors (24.2µF, 36.2µF, 64.7µF, 91.2µF) are necessary. The performance of the machine is evaluated with the help of magnetic characteristics and other equations obtained from its per phase equivalent circuit. The experimentation has been carried out in a hardware prototype system developed in the laboratory. The experimental and the simulated results are compared and found that both are nearly same for different operating conditions, which indicates the efficacy of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Modular nine-level single-phase inverter with quadruple voltage gain using reduced blocking voltage switches Identification of multiple power quality disturbances in hybrid microgrid using deep stacked auto-encoder based bi-directional LSTM classifier Exponential function LMS and fractional order pid based voltage power quality enhancement in distribution network A new discrete GaN-based dv/dt control circuit for megahertz frequency power converters Anomaly detection of adversarial cyber attacks on electric vehicle charging stations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1