The zona incerta regulates burying behavior and normalizes anxiety-like behavior in inescapable stressful male mice by object cue

IF 4.3 2区 医学 Q1 NEUROSCIENCES Neurobiology of Stress Pub Date : 2025-01-01 DOI:10.1016/j.ynstr.2024.100704
Yueqin Liu , Lianli Qiu , Jiahui Qian , Qiang Xu , Rongfeng Qi , Yifeng Luo , Zhihong Cao , Zhiqiang Zhang , Wei Wu , Longjiang Zhang , Guangming Lu
{"title":"The zona incerta regulates burying behavior and normalizes anxiety-like behavior in inescapable stressful male mice by object cue","authors":"Yueqin Liu ,&nbsp;Lianli Qiu ,&nbsp;Jiahui Qian ,&nbsp;Qiang Xu ,&nbsp;Rongfeng Qi ,&nbsp;Yifeng Luo ,&nbsp;Zhihong Cao ,&nbsp;Zhiqiang Zhang ,&nbsp;Wei Wu ,&nbsp;Longjiang Zhang ,&nbsp;Guangming Lu","doi":"10.1016/j.ynstr.2024.100704","DOIUrl":null,"url":null,"abstract":"<div><div>Inescapable stressful events often precipitate long-term alterations in emotion-related behaviors and poor sleep quality, with anxiety being a prevalent associated disorder. The defensive burying behavior of rodents is a response to imminent threats that becomes markedly pronounced in response to anxiety. However, the neural foundations of defensive burying behavior and etiology of anxiety remain largely unknown. In this study, we established a model employing object binding to elicit increased burying behavior in mice, thereby enhancing fear resolution and subsequently reducing anxious behaviors. Notably, the mice that associated shock with an object exhibited less object exploration and the zona incerta (ZI) neurons showed higher calcium activity during object exploration as compared to the Shock only mice. Although the calcium activity in ZI neurons of the Object mice was identical to the Shock only mice, the Object mice exhibited more burying behavior. Furthermore, the time spent in the center of the open-field test was directly proportional to the duration of burying behavior. Chemogenetic activation of ZI neurons extended the burying time and concomitantly ameliorated anxiety-like behavior. Importantly, chemogenetic enhancement of projection from ZI neurons to the ventral periaqueductal gray (vPAG), a brain region that plays a critical role in autonomic function, normalizes anxious behavior without influencing burying behavior. Collectively, these findings systematically reveal the functions and underlying mechanisms of the ZI-vPAG circuit in controlling behaviors akin to anxiety, offering significant insights into ZI's role in the pathophysiology of anxiety disorders.</div></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"34 ","pages":"Article 100704"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289524001000","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Inescapable stressful events often precipitate long-term alterations in emotion-related behaviors and poor sleep quality, with anxiety being a prevalent associated disorder. The defensive burying behavior of rodents is a response to imminent threats that becomes markedly pronounced in response to anxiety. However, the neural foundations of defensive burying behavior and etiology of anxiety remain largely unknown. In this study, we established a model employing object binding to elicit increased burying behavior in mice, thereby enhancing fear resolution and subsequently reducing anxious behaviors. Notably, the mice that associated shock with an object exhibited less object exploration and the zona incerta (ZI) neurons showed higher calcium activity during object exploration as compared to the Shock only mice. Although the calcium activity in ZI neurons of the Object mice was identical to the Shock only mice, the Object mice exhibited more burying behavior. Furthermore, the time spent in the center of the open-field test was directly proportional to the duration of burying behavior. Chemogenetic activation of ZI neurons extended the burying time and concomitantly ameliorated anxiety-like behavior. Importantly, chemogenetic enhancement of projection from ZI neurons to the ventral periaqueductal gray (vPAG), a brain region that plays a critical role in autonomic function, normalizes anxious behavior without influencing burying behavior. Collectively, these findings systematically reveal the functions and underlying mechanisms of the ZI-vPAG circuit in controlling behaviors akin to anxiety, offering significant insights into ZI's role in the pathophysiology of anxiety disorders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Stress
Neurobiology of Stress Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
9.40
自引率
4.00%
发文量
74
审稿时长
48 days
期刊介绍: Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal. Basic, translational and clinical research on the following topics as they relate to stress will be covered: Molecular substrates and cell signaling, Genetics and epigenetics, Stress circuitry, Structural and physiological plasticity, Developmental Aspects, Laboratory models of stress, Neuroinflammation and pathology, Memory and Cognition, Motivational Processes, Fear and Anxiety, Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse), Neuropsychopharmacology.
期刊最新文献
Gut Microbiome-Liver-Brain axis in Alcohol Use Disorder. The role of gut dysbiosis and stress in alcohol-related cognitive impairment progression: possible therapeutic approaches Illuminating the impact of stress: In vivo approaches to track stress-related neural adaptations Editorial Board Social context modulates active avoidance: Contributions of the anterior cingulate cortex in male and female rats Elevated GABAergic neurotransmission prevents chronic intermittent ethanol induced hyperexcitability of intrinsic and extrinsic inputs to the ventral subiculum of female rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1