Anisotropic dispersion of excitonic bands of the single-crystal pentacene (001) surface as measured by low-energy angle-resolved high-resolution electron energy-loss spectroscopy
Yasuo Nakayama , François C. Bocquet , Ryohei Tsuruta , Serguei Soubatch , F. Stefan Tautz
{"title":"Anisotropic dispersion of excitonic bands of the single-crystal pentacene (001) surface as measured by low-energy angle-resolved high-resolution electron energy-loss spectroscopy","authors":"Yasuo Nakayama , François C. Bocquet , Ryohei Tsuruta , Serguei Soubatch , F. Stefan Tautz","doi":"10.1016/j.elspec.2025.147514","DOIUrl":null,"url":null,"abstract":"<div><div>Low-energy high-resolution electron energy-loss spectroscopy (HREELS) is a useful technique for the characterization of various excitation processes at solid surfaces. However, no successful work has been reported on molecular single-crystal samples yet. In the present study, low-energy angle-resolved HREELS measurements were conducted on single-crystal pentacene, an organic semiconductor. The results confirmed the excitonic bands exhibiting energy–momentum dispersion and anisotropy of these depending on the surface crystallographic directions, corroborating the occurrence of exciton delocalization, contrary to the ordinary notion of the Frenkel exciton for weakly interacting van der Waals molecular solids. The present results demonstrate that low-energy angle-resolved HREELS is applicable to the precise examination of the excitonic characteristics of solid-state surfaces, even for molecular semiconductor single crystals.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"279 ","pages":"Article 147514"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electron Spectroscopy and Related Phenomena","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204825000015","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Low-energy high-resolution electron energy-loss spectroscopy (HREELS) is a useful technique for the characterization of various excitation processes at solid surfaces. However, no successful work has been reported on molecular single-crystal samples yet. In the present study, low-energy angle-resolved HREELS measurements were conducted on single-crystal pentacene, an organic semiconductor. The results confirmed the excitonic bands exhibiting energy–momentum dispersion and anisotropy of these depending on the surface crystallographic directions, corroborating the occurrence of exciton delocalization, contrary to the ordinary notion of the Frenkel exciton for weakly interacting van der Waals molecular solids. The present results demonstrate that low-energy angle-resolved HREELS is applicable to the precise examination of the excitonic characteristics of solid-state surfaces, even for molecular semiconductor single crystals.
期刊介绍:
The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation.