Towards a joint semantic analysis in mobile forensics environments

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Forensic Science International-Digital Investigation Pub Date : 2024-12-12 DOI:10.1016/j.fsidi.2024.301846
Jian Xi , Melanie Siegel , Dirk Labudde , Michael Spranger
{"title":"Towards a joint semantic analysis in mobile forensics environments","authors":"Jian Xi ,&nbsp;Melanie Siegel ,&nbsp;Dirk Labudde ,&nbsp;Michael Spranger","doi":"10.1016/j.fsidi.2024.301846","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, mobile devices have become the dominant communication medium in our daily lives. This trend is also evident in the planning, arranging, and committing of criminal activities, particularly in organized crime. Accordingly, mobile devices have become an essential source of evidence for data analysts or investigators, especially in Law Enforcement Agencies (LEAs). However, communication via mobile devices generates vast amounts of data, rendering manual analysis impractical and resulting in growing backlogs of evidence awaiting analysis process, which can take months to years, thereby hindering investigations and trials. The automatic analysis of textual chat messages falls short because communication is not limited to the single modality, such as text, but instead spans multiple modalities, including voice messages, pictures, videos, and sometimes various messengers (channels). These modalities frequently overlap or interchange within the same communication, further complicating the analysis process. To achieve a correct and comprehensive understanding of such communication, it is essential to consider all modalities and channels through a consistent joint semantic analysis. This paper introduces a novel mobile forensics approach that enables efficient assessment of mobile data without losing semantic consistency by unifying <em>semantic concepts</em> across different modalities and channels. Additionally, a <em>knowledge-guided</em> topic modeling approach is proposed, integrating expertise into the investigation process to effectively examine large volumes of noisy mobile data. In this way, investigators can quickly identify evidentiary parts of the communication and completely facilitate reconstructing the course of events.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"52 ","pages":"Article 301846"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281724001732","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, mobile devices have become the dominant communication medium in our daily lives. This trend is also evident in the planning, arranging, and committing of criminal activities, particularly in organized crime. Accordingly, mobile devices have become an essential source of evidence for data analysts or investigators, especially in Law Enforcement Agencies (LEAs). However, communication via mobile devices generates vast amounts of data, rendering manual analysis impractical and resulting in growing backlogs of evidence awaiting analysis process, which can take months to years, thereby hindering investigations and trials. The automatic analysis of textual chat messages falls short because communication is not limited to the single modality, such as text, but instead spans multiple modalities, including voice messages, pictures, videos, and sometimes various messengers (channels). These modalities frequently overlap or interchange within the same communication, further complicating the analysis process. To achieve a correct and comprehensive understanding of such communication, it is essential to consider all modalities and channels through a consistent joint semantic analysis. This paper introduces a novel mobile forensics approach that enables efficient assessment of mobile data without losing semantic consistency by unifying semantic concepts across different modalities and channels. Additionally, a knowledge-guided topic modeling approach is proposed, integrating expertise into the investigation process to effectively examine large volumes of noisy mobile data. In this way, investigators can quickly identify evidentiary parts of the communication and completely facilitate reconstructing the course of events.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
期刊最新文献
Exploring the potential of large language models for improving digital forensic investigation efficiency Optimising data set creation in the cybersecurity landscape with a special focus on digital forensics: Principles, characteristics, and use cases Tool induced biases? Misleading data presentation as a biasing source in digital forensic analysis WristSense framework: Exploring the forensic potential of wrist-wear devices through case studies The ghost in the building: Non-invasive spoofing and covert attacks on automated buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1