SAD: Self-assessment of depression for Bangladeshi university students using machine learning and NLP

IF 2.3 Q2 COMPUTER SCIENCE, THEORY & METHODS Array Pub Date : 2024-12-09 DOI:10.1016/j.array.2024.100372
Md Shawmoon Azad, Shakirul Islam Leeon, Riasat Khan, Nabeel Mohammed, Sifat Momen
{"title":"SAD: Self-assessment of depression for Bangladeshi university students using machine learning and NLP","authors":"Md Shawmoon Azad,&nbsp;Shakirul Islam Leeon,&nbsp;Riasat Khan,&nbsp;Nabeel Mohammed,&nbsp;Sifat Momen","doi":"10.1016/j.array.2024.100372","DOIUrl":null,"url":null,"abstract":"<div><div>Depressive illness, influenced by social, psychological, and biological factors, is a significant public health concern that necessitates accurate and prompt diagnosis for effective treatment. This study explores the multifaceted nature of depression by investigating its correlation with various social factors and employing machine learning, natural language processing, and explainable AI to analyze depression assessment scales. Data from a survey of 520 Bangladeshi university students, encompassing socio-personal and clinical questions, was utilized in this study. Eight machine learning algorithms with optimized hyperparameters were applied to evaluate eight depression assessment scales, identifying the most effective one. Additionally, ten machine learning models, including five BERT-based and two generative large language models, were tested using three prompting approaches and assessed across four categories of social factors: relationship dynamics, parental pressure, academic contentment, and exposure to violence. The results showed that support vector machines achieved a remarkable 99.14% accuracy with the PHQ9 scale. While considering the social factors, the stacking ensemble classifier demonstrated the best results. Among NLP approaches, BioBERT outperformed other BERT-based models with 90.34% accuracy when considering all social aspects. In prompting approaches, the Tree of Thought prompting on Claude Sonnet surpassed other prompting techniques with 75.00% accuracy. However, traditional machine learning models outshined NLP methods in tabular data analysis, with the stacking ensemble model achieving the highest accuracy of 97.88%. The interpretability of the top-performing classifier was ensured using LIME.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"25 ","pages":"Article 100372"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005624000389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Depressive illness, influenced by social, psychological, and biological factors, is a significant public health concern that necessitates accurate and prompt diagnosis for effective treatment. This study explores the multifaceted nature of depression by investigating its correlation with various social factors and employing machine learning, natural language processing, and explainable AI to analyze depression assessment scales. Data from a survey of 520 Bangladeshi university students, encompassing socio-personal and clinical questions, was utilized in this study. Eight machine learning algorithms with optimized hyperparameters were applied to evaluate eight depression assessment scales, identifying the most effective one. Additionally, ten machine learning models, including five BERT-based and two generative large language models, were tested using three prompting approaches and assessed across four categories of social factors: relationship dynamics, parental pressure, academic contentment, and exposure to violence. The results showed that support vector machines achieved a remarkable 99.14% accuracy with the PHQ9 scale. While considering the social factors, the stacking ensemble classifier demonstrated the best results. Among NLP approaches, BioBERT outperformed other BERT-based models with 90.34% accuracy when considering all social aspects. In prompting approaches, the Tree of Thought prompting on Claude Sonnet surpassed other prompting techniques with 75.00% accuracy. However, traditional machine learning models outshined NLP methods in tabular data analysis, with the stacking ensemble model achieving the highest accuracy of 97.88%. The interpretability of the top-performing classifier was ensured using LIME.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
期刊最新文献
Effective depression detection and interpretation: Integrating machine learning, deep learning, language models, and explainable AI Stock price prediction with attentive temporal convolution-based generative adversarial network An attention based residual U-Net with swin transformer for brain MRI segmentation Mining area skyline objects from map-based big data using Apache Spark framework SAD: Self-assessment of depression for Bangladeshi university students using machine learning and NLP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1