High-temperature instability and low-temperature magnetism of RTIn compounds, the case of CePtIn

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Solid State Chemistry Pub Date : 2025-01-11 DOI:10.1016/j.jssc.2025.125203
M. Klicpera
{"title":"High-temperature instability and low-temperature magnetism of RTIn compounds, the case of CePtIn","authors":"M. Klicpera","doi":"10.1016/j.jssc.2025.125203","DOIUrl":null,"url":null,"abstract":"<div><div>Cerium-based intermetallics stay in the foreground of scientific interest for several decades due to their frequently complex properties derived from the competition between long-range interactions and Kondo screening acting on a single 4f electron. The present work is dedicated to the heavy-fermion CePtIn intermetallic compound which was previously concluded to reveal paramagnetic properties and non-Fermi-liquid behaviour down to the lowest temperatures. Our study confirms this behaviour. Considering the previous reports on the physical properties of CePtIn, we focus on its structural and phase stability at high temperatures and crystal-field-related magnetic properties at low temperatures. DSC and powder X-ray diffraction measurements demonstrate initial CePtIn phase degradation and decomposition and formation of binary intermetallics at high temperatures. The inelastic neutron scattering experiment identifies crystal field excitation at 9.8 meV. The second CF excitation, expected for Ce<sup>3+</sup>-based system, is proposed at significantly higher energy. The results are discussed in the framework of CePdIn and LaPtIn analogues.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"344 ","pages":"Article 125203"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002245962500026X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Cerium-based intermetallics stay in the foreground of scientific interest for several decades due to their frequently complex properties derived from the competition between long-range interactions and Kondo screening acting on a single 4f electron. The present work is dedicated to the heavy-fermion CePtIn intermetallic compound which was previously concluded to reveal paramagnetic properties and non-Fermi-liquid behaviour down to the lowest temperatures. Our study confirms this behaviour. Considering the previous reports on the physical properties of CePtIn, we focus on its structural and phase stability at high temperatures and crystal-field-related magnetic properties at low temperatures. DSC and powder X-ray diffraction measurements demonstrate initial CePtIn phase degradation and decomposition and formation of binary intermetallics at high temperatures. The inelastic neutron scattering experiment identifies crystal field excitation at 9.8 meV. The second CF excitation, expected for Ce3+-based system, is proposed at significantly higher energy. The results are discussed in the framework of CePdIn and LaPtIn analogues.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
期刊最新文献
Editorial Board Contents continued Exploring the effects of halide anions and pressure on the structural and functional properties of helical coordination polymers: Cu(SCN2H4)3X (X = Cl, Br, I) Long-term aging of multiwall nanotubes and fullerene-like nanoparticles of WS2 A Ge/GeO2/Titanate nanocomposite with high energy density and enhanced long-term stability for lithium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1