Investigating nearshore spatial and temporal trends in nutrient concentrations along an urban northern shoreline, Lake Ontario

IF 2.4 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Journal of Great Lakes Research Pub Date : 2024-12-01 DOI:10.1016/j.jglr.2024.102419
Tyler J. Harrow-Lyle , David C. Depew , Andrew J. Bramburger , Reza Valipour , Krista M. Chomicki
{"title":"Investigating nearshore spatial and temporal trends in nutrient concentrations along an urban northern shoreline, Lake Ontario","authors":"Tyler J. Harrow-Lyle ,&nbsp;David C. Depew ,&nbsp;Andrew J. Bramburger ,&nbsp;Reza Valipour ,&nbsp;Krista M. Chomicki","doi":"10.1016/j.jglr.2024.102419","DOIUrl":null,"url":null,"abstract":"<div><div>The nearshore zone of the Laurentian Great Lakes is of significant ecological importance, providing critical biogeochemical processes supporting spatially diverse habitats for a variety of species. Extreme plant and algal growth are common due to excessive anthropogenic eutrophication, with exacerbations from dreissenid establishment and lake mixing (e.g., coastal upwelling events and nearshore-offshore water exchanges), resulting in nuisance algal blooms across the nearshore area adjacent to Western Durham, Ontario, Canada. Thus, our main goal was to characterize the trends in essential nutrients (i.e., phosphorus and nitrogen) within the nearshore by applying general additive models on irregular time-series from 2011 to 2022 and to identify plausible contributing factors using exploratory principal component analysis. Increasing trends for total phosphorus were observed in surface (0.5 m below the surface) and benthic (0.5 m above the bottom) waters despite decreases in point source loading to the area. Most notably, the local water pollution control plant (WPCP) outfall did not seem to drive lake phosphorus concentrations across the study area, depicted by an orthogonal relationship within the principal component analysis. While the WPCP is a point source to the nearshore, it does not appear to be the primary driver of temporal lake phosphorus trends. Our results suggest that weather, inertial forcings and lake hydrodynamics in combination with traditional point-sources across Western Durham are contributing to the increasing total phosphorus trends observed as the peak period of wave spectra, wave height, alongshore wind speeds, watershed loadings, and total phosphorus concentrations within Lake Ontario were positively associated.</div></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"50 6","pages":"Article 102419"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0380133024001783","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The nearshore zone of the Laurentian Great Lakes is of significant ecological importance, providing critical biogeochemical processes supporting spatially diverse habitats for a variety of species. Extreme plant and algal growth are common due to excessive anthropogenic eutrophication, with exacerbations from dreissenid establishment and lake mixing (e.g., coastal upwelling events and nearshore-offshore water exchanges), resulting in nuisance algal blooms across the nearshore area adjacent to Western Durham, Ontario, Canada. Thus, our main goal was to characterize the trends in essential nutrients (i.e., phosphorus and nitrogen) within the nearshore by applying general additive models on irregular time-series from 2011 to 2022 and to identify plausible contributing factors using exploratory principal component analysis. Increasing trends for total phosphorus were observed in surface (0.5 m below the surface) and benthic (0.5 m above the bottom) waters despite decreases in point source loading to the area. Most notably, the local water pollution control plant (WPCP) outfall did not seem to drive lake phosphorus concentrations across the study area, depicted by an orthogonal relationship within the principal component analysis. While the WPCP is a point source to the nearshore, it does not appear to be the primary driver of temporal lake phosphorus trends. Our results suggest that weather, inertial forcings and lake hydrodynamics in combination with traditional point-sources across Western Durham are contributing to the increasing total phosphorus trends observed as the peak period of wave spectra, wave height, alongshore wind speeds, watershed loadings, and total phosphorus concentrations within Lake Ontario were positively associated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Great Lakes Research
Journal of Great Lakes Research 生物-海洋与淡水生物学
CiteScore
5.10
自引率
13.60%
发文量
178
审稿时长
6 months
期刊介绍: Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.
期刊最新文献
Editorial Board Full year seasonality of benthos in the nearshore of Lake Superior Network of nearshore protected areas provides important benefits to lake whitefish in the Apostle Islands region of Lake Superior LiDAR-derived measurements of rapid coastal change along Wisconsin’s Lake Superior coast (2009–2019) Connecting tributary mercury loads to nearshore and offshore sediments in Lake Superior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1