David Carramiñana, Ana M. Bernardos, Juan A. Besada, José R. Casar
{"title":"Enhancing healthcare infrastructure resilience through agent-based simulation methods","authors":"David Carramiñana, Ana M. Bernardos, Juan A. Besada, José R. Casar","doi":"10.1016/j.comcom.2025.108070","DOIUrl":null,"url":null,"abstract":"<div><div>Critical infrastructures face demanding challenges due to natural and human-generated threats, such as pandemics, workforce shortages or cyber-attacks, which might severely compromise service quality. To improve system resilience, decision-makers would need intelligent tools for quick and efficient resource allocation. This article explores an agent-based simulation model that intends to capture a part of the complexity of critical infrastructure systems, particularly considering the interdependencies of healthcare systems with information and telecommunication systems. Such a model enables to implement a simulation-based optimization approach in which the exposure of critical systems to risks is evaluated, while comparing the mitigation effects of multiple tactical and strategical decision alternatives to enhance their resilience. The proposed model is designed to be parameterizable, to enable adapting it to risk scenarios with different severity, and it facilitates the compilation of relevant performance indicators enabling monitoring at both agent level and system level. To validate the agent-based model, a literature-supported methodology has been used to perform cross-validation, sensitivity analysis and test the usefulness of the proposed model through a use case. The use case analyzes the impact of a concurrent pandemic and a cyber-attack on a hospital and compares different resiliency-enhancing countermeasures using contingency tables. Overall, the use case illustrates the feasibility and versatility of the proposed approach to enhance resiliency.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"234 ","pages":"Article 108070"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366425000271","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Critical infrastructures face demanding challenges due to natural and human-generated threats, such as pandemics, workforce shortages or cyber-attacks, which might severely compromise service quality. To improve system resilience, decision-makers would need intelligent tools for quick and efficient resource allocation. This article explores an agent-based simulation model that intends to capture a part of the complexity of critical infrastructure systems, particularly considering the interdependencies of healthcare systems with information and telecommunication systems. Such a model enables to implement a simulation-based optimization approach in which the exposure of critical systems to risks is evaluated, while comparing the mitigation effects of multiple tactical and strategical decision alternatives to enhance their resilience. The proposed model is designed to be parameterizable, to enable adapting it to risk scenarios with different severity, and it facilitates the compilation of relevant performance indicators enabling monitoring at both agent level and system level. To validate the agent-based model, a literature-supported methodology has been used to perform cross-validation, sensitivity analysis and test the usefulness of the proposed model through a use case. The use case analyzes the impact of a concurrent pandemic and a cyber-attack on a hospital and compares different resiliency-enhancing countermeasures using contingency tables. Overall, the use case illustrates the feasibility and versatility of the proposed approach to enhance resiliency.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.