Li2TeO4: Structural characterization and ionic conductivity measurements of a new tellurate

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Solid State Chemistry Pub Date : 2024-12-25 DOI:10.1016/j.jssc.2024.125170
Cyrille Galven, Marie-Pierre Crosnier-Lopez, Françoise Le Berre
{"title":"Li2TeO4: Structural characterization and ionic conductivity measurements of a new tellurate","authors":"Cyrille Galven,&nbsp;Marie-Pierre Crosnier-Lopez,&nbsp;Françoise Le Berre","doi":"10.1016/j.jssc.2024.125170","DOIUrl":null,"url":null,"abstract":"<div><div>A new tellurate Li<sub>2</sub>TeO<sub>4</sub> (Li<sub>2</sub>TeO<sub>4</sub>-LT) was synthesized via a conventional solid-state route from specific precursors, LiOH.H<sub>2</sub>O and H<sub>6</sub>TeO<sub>6</sub>. The cell, initially identified as tetragonal from X-ray powder diffraction at room temperature, was finally found to be orthorhombic thanks to thermal X-ray powder diffraction. The space group, <em>Pbcn</em>, was determined with the help of electron diffraction while the structure was obtained from neutron powder diffraction (a = 5.0106(3), b = 11.5369(8) and c = 5.0057(4) Å. As the tellurate β-Na<sub>2</sub>TeO<sub>4</sub>, its structure is built from TeO<sub>6</sub> octahedra sharing edges forming thus infinite chains [TeO<sub>4</sub>]<sub>n</sub><sup>2n−</sup> parallel to the <em>c</em> axis. These chains are separated from each other by Li<sup>+</sup> ions in octahedral coordination. Contrary to β-Na<sub>2</sub>TeO<sub>4</sub><sup>,</sup> Li<sub>2</sub>TeO<sub>4</sub>-LT does not capture CO<sub>2</sub> and presents a modest ionic conduction (300 °C, T = 1.8 10<sup>−8</sup> S cm<sup>−1</sup>), lower than the tetragonal Li<sub>2</sub>TeO<sub>4</sub> variety (300 °C, ≈10<sup>−6</sup> S.cm-<sup>1</sup>). In addition, a complete solid solution Na<sub>2-x</sub>Li<sub>x</sub>TeO<sub>4</sub> was evidenced.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"344 ","pages":"Article 125170"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459624006248","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

A new tellurate Li2TeO4 (Li2TeO4-LT) was synthesized via a conventional solid-state route from specific precursors, LiOH.H2O and H6TeO6. The cell, initially identified as tetragonal from X-ray powder diffraction at room temperature, was finally found to be orthorhombic thanks to thermal X-ray powder diffraction. The space group, Pbcn, was determined with the help of electron diffraction while the structure was obtained from neutron powder diffraction (a = 5.0106(3), b = 11.5369(8) and c = 5.0057(4) Å. As the tellurate β-Na2TeO4, its structure is built from TeO6 octahedra sharing edges forming thus infinite chains [TeO4]n2n− parallel to the c axis. These chains are separated from each other by Li+ ions in octahedral coordination. Contrary to β-Na2TeO4, Li2TeO4-LT does not capture CO2 and presents a modest ionic conduction (300 °C, T = 1.8 10−8 S cm−1), lower than the tetragonal Li2TeO4 variety (300 °C, ≈10−6 S.cm-1). In addition, a complete solid solution Na2-xLixTeO4 was evidenced.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
期刊最新文献
Editorial Board Contents continued Exploring the effects of halide anions and pressure on the structural and functional properties of helical coordination polymers: Cu(SCN2H4)3X (X = Cl, Br, I) Investigation of phase relations in SrO–ZrO2–P2O5 system at 1573 K; phase analysis and thermal study of phosphate compounds Long-term aging of multiwall nanotubes and fullerene-like nanoparticles of WS2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1